Current Evidence Base of FDG-PET/CT Imaging in the Clinical Management of Malignant Pleural Mesothelioma: Emerging Significance of Image Segmentation and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

Sandip Basu, Babak Saboury, Drew A. Torigian, Abass Alavi

ABSTRACT

Increasingly, integrated positron emission tomography-computed tomography (PET/CT) imaging is playing a crucial role in the assessment of patients with known or suspected malignant pleural mesothelioma (MPM). Based on the data reported in the literature, this combined modality is likely to become the instrument of choice for examining patients of MPM. The research on this subject has focused on the following five domains: (1) differentiation of MPM from other benign pleural diseases, (2) preoperative staging for the selection of appropriate candidates for surgery, (3) evaluation for therapy response and post-treatment surveillance for recurrence, (4) prognostication based upon the intensity of 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake, and (5) planning of radiotherapy. These represent the bases for critical decision making in the management of mesothelioma, and FDG-PET/CT offers potential advantages over conventional CT imaging and thus can play a pivotal role in this regard. Optimal characterization of this potentially fatal disease with a high negative predictive value for MPM, superior capability for cancer staging initially and at the later course of disease, and ability for measuring therapeutic response and the precise determination of the target volume for radiotherapy planning represent distinct advantages of this promising molecular imaging tool. In this communication, we have explored the promising role of integrated FDG-PET/CT in the overall management of this serious malignancy. From the available data, the major role of PET-CT at present appears to be in the preoperative disease staging, response to treatment assessment, and post-treatment disease surveillance of MPM. In all these three areas, PET-CT convincingly shows better results than conventional anatomical imaging alone and thereby can aid in exploring novel therapeutic approaches. Disease prognosis and radiotherapy planning are evolving areas where this modality has demonstrated significant promise, but this has to be investigated further. The differentiating of MPM from benign pleural disease is a challenging issue; though in limited studies, it has shown promising results, single standardized uptake value (SUV) cutoff technique cannot be the optimal way for this purpose. Dual time point and delayed imaging helps further in this setting; however, more data require to be accrued in this area. We, in this review, have also discussed the feasibility of a new method of image segmentation based on an iterative thresholding algorithm, which permits definition of the boundaries of lesions based on PET images alone to provide lesional metabolically active tumor volumes, lesional partial volume corrected SUV (PVC-SUV) measurements, lesional PVC metabolic burden (PVC-MB) (calculated as the product of lesional MVP and lesional PVC-SUV), and whole body metabolic burden (WBMB) (calculated as the sum of lesional PVC-MB of all lesions). This global disease assessment, we believe, will be the way forward for assessing this malignancy with a non-invasive imaging modality. More... »

PAGES

801-811

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11307-010-0426-6

DOI

http://dx.doi.org/10.1007/s11307-010-0426-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022326265

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21136185


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evidence-Based Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mesothelioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pleural Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Radiation Medicine Center (Bhabha Atomic Research Center), Tata Memorial Hospital Annexe, Parel, Bombay, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basu", 
        "givenName": "Sandip", 
        "id": "sg:person.01042154521.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042154521.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saboury", 
        "givenName": "Babak", 
        "id": "sg:person.01042766404.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042766404.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torigian", 
        "givenName": "Drew A.", 
        "id": "sg:person.01026611221.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026611221.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alavi", 
        "givenName": "Abass", 
        "id": "sg:person.013064447257.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-5223(03)00207-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003783638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5223(03)00207-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003783638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e3282f813a4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e3282f813a4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdh059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004445038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-6196(12)65411-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005403029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/sonc.2002.30228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006310525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006344714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007308446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2009.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008143800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0740-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010321084", 
          "https://doi.org/10.1007/s00259-008-0740-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.jto.0000263706.23579.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012287031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5002(05)81557-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012915996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5002(05)81557-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012915996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtcvs.2004.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013066570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa022136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013098511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181c0a7ff", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015130340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-1055-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015614585", 
          "https://doi.org/10.1007/s00259-002-1055-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thorax.58.12.1077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016006964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thorax.58.12.1077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016006964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.114.3.713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018129528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-009-0258-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018798205", 
          "https://doi.org/10.1007/s11307-009-0258-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-009-0258-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018798205", 
          "https://doi.org/10.1007/s11307-009-0258-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2007.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020889794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2006.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021133527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mtc.2000.106529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022847198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2009.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023740915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3302974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024084915", 
          "https://doi.org/10.1038/sj.gt.3302974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3181cbf465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024471023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2004.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025440260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.042333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026388368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-4-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027913866", 
          "https://doi.org/10.1186/1748-717x-4-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdj073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028183080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.241035058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029001697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2006.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032932334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2006.06.8999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033791709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181817b3d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035183351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181817b3d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035183351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5223(99)70469-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035413157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-009-0203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037406558", 
          "https://doi.org/10.1007/s11307-009-0203-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-009-0203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037406558", 
          "https://doi.org/10.1007/s11307-009-0203-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2007.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.103.4_supplement.373s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038691711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-007-0459-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041392821", 
          "https://doi.org/10.1007/s00259-007-0459-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-007-0459-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041392821", 
          "https://doi.org/10.1007/s00259-007-0459-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6690105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046032445", 
          "https://doi.org/10.1038/sj.bjc.6690105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6690105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046032445", 
          "https://doi.org/10.1038/sj.bjc.6690105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejcts.2008.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046394003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3816/clc.2009.n.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046457916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.06.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048457335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.108.4.1122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049508829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nic.2009.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051102151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-009-0212-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052292004", 
          "https://doi.org/10.1007/s11307-009-0212-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-009-0212-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052292004", 
          "https://doi.org/10.1007/s11307-009-0212-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2008-1039314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057534721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2003.11.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.154.3.2106209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069315936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.172.4.10587144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069322319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3413/nukmed-0091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071311785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074508160", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075213866", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2382041977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077179766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077179889", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082794936", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "Increasingly, integrated positron emission tomography-computed tomography (PET/CT) imaging is playing a crucial role in the assessment of patients with known or suspected malignant pleural mesothelioma (MPM). Based on the data reported in the literature, this combined modality is likely to become the instrument of choice for examining patients of MPM. The research on this subject has focused on the following five domains: (1) differentiation of MPM from other benign pleural diseases, (2) preoperative staging for the selection of appropriate candidates for surgery, (3) evaluation for therapy response and post-treatment surveillance for recurrence, (4) prognostication based upon the intensity of 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake, and (5) planning of radiotherapy. These represent the bases for critical decision making in the management of mesothelioma, and FDG-PET/CT offers potential advantages over conventional CT imaging and thus can play a pivotal role in this regard. Optimal characterization of this potentially fatal disease with a high negative predictive value for MPM, superior capability for cancer staging initially and at the later course of disease, and ability for measuring therapeutic response and the precise determination of the target volume for radiotherapy planning represent distinct advantages of this promising molecular imaging tool. In this communication, we have explored the promising role of integrated FDG-PET/CT in the overall management of this serious malignancy. From the available data, the major role of PET-CT at present appears to be in the preoperative disease staging, response to treatment assessment, and post-treatment disease surveillance of MPM. In all these three areas, PET-CT convincingly shows better results than conventional anatomical imaging alone and thereby can aid in exploring novel therapeutic approaches. Disease prognosis and radiotherapy planning are evolving areas where this modality has demonstrated significant promise, but this has to be investigated further. The differentiating of MPM from benign pleural disease is a challenging issue; though in limited studies, it has shown promising results, single standardized uptake value (SUV) cutoff technique cannot be the optimal way for this purpose. Dual time point and delayed imaging helps further in this setting; however, more data require to be accrued in this area. We, in this review, have also discussed the feasibility of a new method of image segmentation based on an iterative thresholding algorithm, which permits definition of the boundaries of lesions based on PET images alone to provide lesional metabolically active tumor volumes, lesional partial volume corrected SUV (PVC-SUV) measurements, lesional PVC metabolic burden (PVC-MB) (calculated as the product of lesional MVP and lesional PVC-SUV), and whole body metabolic burden (WBMB) (calculated as the sum of lesional PVC-MB of all lesions). This global disease assessment, we believe, will be the way forward for assessing this malignancy with a non-invasive imaging modality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11307-010-0426-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1118463", 
        "issn": [
          "1536-1632", 
          "1878-5751"
        ], 
        "name": "Molecular Imaging and Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Current Evidence Base of FDG-PET/CT Imaging in the Clinical Management of Malignant Pleural Mesothelioma: Emerging Significance of Image Segmentation and Global Disease Assessment", 
    "pagination": "801-811", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a5dc79640b644da022630bd3d673503f067ebd1e45eef9a731613d72bb82410"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21136185"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101125610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11307-010-0426-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022326265"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11307-010-0426-6", 
      "https://app.dimensions.ai/details/publication/pub.1022326265"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11307-010-0426-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0426-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0426-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0426-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0426-6'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      92 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11307-010-0426-6 schema:about N3d173149fe8246458fdc3993a5a86b6b
2 N42b491d77bc84f4ca6fedf9796be08b2
3 N5fcc9a8f8a5f4305a23165fd723ce108
4 N69a3260bc43d4b0f8d96d448d07bedf8
5 N79dd2cdf4593449fa092456134d1c804
6 N7f0c1ae7e990472184621945d385dfb1
7 Nad8aaa42b16c4deca1b5061f1775d17a
8 Nb7da492f53bd4f57b1d5451df59a1471
9 Ncbefc8e44ce243cfadfa135a655dbe45
10 anzsrc-for:08
11 anzsrc-for:0801
12 schema:author N7bfdda4f1790484fb10857665b1831e6
13 schema:citation sg:pub.10.1007/s00259-002-1055-3
14 sg:pub.10.1007/s00259-007-0459-5
15 sg:pub.10.1007/s00259-008-0740-2
16 sg:pub.10.1007/s11307-009-0203-6
17 sg:pub.10.1007/s11307-009-0212-5
18 sg:pub.10.1007/s11307-009-0258-4
19 sg:pub.10.1038/sj.bjc.6690105
20 sg:pub.10.1038/sj.gt.3302974
21 sg:pub.10.1186/1748-717x-4-35
22 https://app.dimensions.ai/details/publication/pub.1074508160
23 https://app.dimensions.ai/details/publication/pub.1075213866
24 https://app.dimensions.ai/details/publication/pub.1077179889
25 https://app.dimensions.ai/details/publication/pub.1082794936
26 https://doi.org/10.1016/j.ejcts.2008.07.050
27 https://doi.org/10.1016/j.ijrobp.2004.03.036
28 https://doi.org/10.1016/j.ijrobp.2004.06.146
29 https://doi.org/10.1016/j.jtcvs.2004.10.034
30 https://doi.org/10.1016/j.lungcan.2006.01.007
31 https://doi.org/10.1016/j.lungcan.2007.09.027
32 https://doi.org/10.1016/j.lungcan.2009.04.015
33 https://doi.org/10.1016/j.nic.2009.08.012
34 https://doi.org/10.1016/j.nucmedbio.2006.08.005
35 https://doi.org/10.1016/j.nucmedbio.2009.01.018
36 https://doi.org/10.1016/j.rcl.2004.09.005
37 https://doi.org/10.1016/s0022-5223(03)00207-1
38 https://doi.org/10.1016/s0022-5223(99)70469-1
39 https://doi.org/10.1016/s0025-6196(12)65411-1
40 https://doi.org/10.1016/s0169-5002(05)81557-0
41 https://doi.org/10.1053/j.semnuclmed.2007.01.005
42 https://doi.org/10.1053/sonc.2002.30228
43 https://doi.org/10.1055/s-2008-1039314
44 https://doi.org/10.1056/nejmoa022136
45 https://doi.org/10.1067/mtc.2000.106529
46 https://doi.org/10.1093/annonc/mdh059
47 https://doi.org/10.1093/annonc/mdj073
48 https://doi.org/10.1097/01.jto.0000263706.23579.35
49 https://doi.org/10.1097/jto.0b013e3181c0a7ff
50 https://doi.org/10.1097/jto.0b013e3181cbf465
51 https://doi.org/10.1097/mnm.0b013e3282f813a4
52 https://doi.org/10.1097/rli.0b013e3181817b3d
53 https://doi.org/10.1136/thorax.58.12.1077
54 https://doi.org/10.1148/radiol.2382041977
55 https://doi.org/10.1148/rg.241035058
56 https://doi.org/10.1158/1078-0432.ccr-07-0403
57 https://doi.org/10.1200/jco.2003.11.136
58 https://doi.org/10.1200/jco.2006.06.8999
59 https://doi.org/10.1378/chest.103.4_supplement.373s
60 https://doi.org/10.1378/chest.108.4.1122
61 https://doi.org/10.1378/chest.114.3.713
62 https://doi.org/10.2214/ajr.154.3.2106209
63 https://doi.org/10.2214/ajr.172.4.10587144
64 https://doi.org/10.2967/jnumed.107.042333
65 https://doi.org/10.3413/nukmed-0091
66 https://doi.org/10.3816/clc.2009.n.033
67 schema:datePublished 2011-10
68 schema:datePublishedReg 2011-10-01
69 schema:description Increasingly, integrated positron emission tomography-computed tomography (PET/CT) imaging is playing a crucial role in the assessment of patients with known or suspected malignant pleural mesothelioma (MPM). Based on the data reported in the literature, this combined modality is likely to become the instrument of choice for examining patients of MPM. The research on this subject has focused on the following five domains: (1) differentiation of MPM from other benign pleural diseases, (2) preoperative staging for the selection of appropriate candidates for surgery, (3) evaluation for therapy response and post-treatment surveillance for recurrence, (4) prognostication based upon the intensity of 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake, and (5) planning of radiotherapy. These represent the bases for critical decision making in the management of mesothelioma, and FDG-PET/CT offers potential advantages over conventional CT imaging and thus can play a pivotal role in this regard. Optimal characterization of this potentially fatal disease with a high negative predictive value for MPM, superior capability for cancer staging initially and at the later course of disease, and ability for measuring therapeutic response and the precise determination of the target volume for radiotherapy planning represent distinct advantages of this promising molecular imaging tool. In this communication, we have explored the promising role of integrated FDG-PET/CT in the overall management of this serious malignancy. From the available data, the major role of PET-CT at present appears to be in the preoperative disease staging, response to treatment assessment, and post-treatment disease surveillance of MPM. In all these three areas, PET-CT convincingly shows better results than conventional anatomical imaging alone and thereby can aid in exploring novel therapeutic approaches. Disease prognosis and radiotherapy planning are evolving areas where this modality has demonstrated significant promise, but this has to be investigated further. The differentiating of MPM from benign pleural disease is a challenging issue; though in limited studies, it has shown promising results, single standardized uptake value (SUV) cutoff technique cannot be the optimal way for this purpose. Dual time point and delayed imaging helps further in this setting; however, more data require to be accrued in this area. We, in this review, have also discussed the feasibility of a new method of image segmentation based on an iterative thresholding algorithm, which permits definition of the boundaries of lesions based on PET images alone to provide lesional metabolically active tumor volumes, lesional partial volume corrected SUV (PVC-SUV) measurements, lesional PVC metabolic burden (PVC-MB) (calculated as the product of lesional MVP and lesional PVC-SUV), and whole body metabolic burden (WBMB) (calculated as the sum of lesional PVC-MB of all lesions). This global disease assessment, we believe, will be the way forward for assessing this malignancy with a non-invasive imaging modality.
70 schema:genre research_article
71 schema:inLanguage en
72 schema:isAccessibleForFree false
73 schema:isPartOf N91f707f8135d4ca499ad308098611bc6
74 Na1031e87b45e4c039b719a26eaa648be
75 sg:journal.1118463
76 schema:name Current Evidence Base of FDG-PET/CT Imaging in the Clinical Management of Malignant Pleural Mesothelioma: Emerging Significance of Image Segmentation and Global Disease Assessment
77 schema:pagination 801-811
78 schema:productId N06d7f6a502c745b3a67cc3ba58ac288f
79 N1c287fa26818479c9dcc574856a940eb
80 N3a1ea09c5e2e4b0aa15d1b7a01ced66a
81 Na398e0292e664a38b5ae389a188846c3
82 Nfec53993e87b47378faa3b4a15a4ef13
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022326265
84 https://doi.org/10.1007/s11307-010-0426-6
85 schema:sdDatePublished 2019-04-10T17:34
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Ne1a7c7252b924b849893d014a28db2ff
88 schema:url http://link.springer.com/10.1007%2Fs11307-010-0426-6
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N06d7f6a502c745b3a67cc3ba58ac288f schema:name nlm_unique_id
93 schema:value 101125610
94 rdf:type schema:PropertyValue
95 N0e42e79081234f9ba377c20bbc6fb39e rdf:first sg:person.01042766404.29
96 rdf:rest N7c859b3d23804b3588a087796655470a
97 N1c287fa26818479c9dcc574856a940eb schema:name pubmed_id
98 schema:value 21136185
99 rdf:type schema:PropertyValue
100 N3a1ea09c5e2e4b0aa15d1b7a01ced66a schema:name doi
101 schema:value 10.1007/s11307-010-0426-6
102 rdf:type schema:PropertyValue
103 N3d173149fe8246458fdc3993a5a86b6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Mesothelioma
105 rdf:type schema:DefinedTerm
106 N42b491d77bc84f4ca6fedf9796be08b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Evidence-Based Medicine
108 rdf:type schema:DefinedTerm
109 N5fcc9a8f8a5f4305a23165fd723ce108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Tomography, X-Ray Computed
111 rdf:type schema:DefinedTerm
112 N69a3260bc43d4b0f8d96d448d07bedf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Multimodal Imaging
114 rdf:type schema:DefinedTerm
115 N79dd2cdf4593449fa092456134d1c804 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Positron-Emission Tomography
117 rdf:type schema:DefinedTerm
118 N7bfdda4f1790484fb10857665b1831e6 rdf:first sg:person.01042154521.46
119 rdf:rest N0e42e79081234f9ba377c20bbc6fb39e
120 N7c859b3d23804b3588a087796655470a rdf:first sg:person.01026611221.88
121 rdf:rest Na7a78b8220d7438b99ae6664fc87e74e
122 N7f0c1ae7e990472184621945d385dfb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Humans
124 rdf:type schema:DefinedTerm
125 N91f707f8135d4ca499ad308098611bc6 schema:issueNumber 5
126 rdf:type schema:PublicationIssue
127 Na1031e87b45e4c039b719a26eaa648be schema:volumeNumber 13
128 rdf:type schema:PublicationVolume
129 Na398e0292e664a38b5ae389a188846c3 schema:name readcube_id
130 schema:value 6a5dc79640b644da022630bd3d673503f067ebd1e45eef9a731613d72bb82410
131 rdf:type schema:PropertyValue
132 Na7a78b8220d7438b99ae6664fc87e74e rdf:first sg:person.013064447257.07
133 rdf:rest rdf:nil
134 Nad8aaa42b16c4deca1b5061f1775d17a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Prognosis
136 rdf:type schema:DefinedTerm
137 Nb7da492f53bd4f57b1d5451df59a1471 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Pleural Neoplasms
139 rdf:type schema:DefinedTerm
140 Ncbefc8e44ce243cfadfa135a655dbe45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Fluorodeoxyglucose F18
142 rdf:type schema:DefinedTerm
143 Ne1a7c7252b924b849893d014a28db2ff schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 Ned07c50f205e43ad895b24eaa3df7c66 schema:name Radiation Medicine Center (Bhabha Atomic Research Center), Tata Memorial Hospital Annexe, Parel, Bombay, India
146 rdf:type schema:Organization
147 Nfec53993e87b47378faa3b4a15a4ef13 schema:name dimensions_id
148 schema:value pub.1022326265
149 rdf:type schema:PropertyValue
150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information and Computing Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
154 schema:name Artificial Intelligence and Image Processing
155 rdf:type schema:DefinedTerm
156 sg:journal.1118463 schema:issn 1536-1632
157 1878-5751
158 schema:name Molecular Imaging and Biology
159 rdf:type schema:Periodical
160 sg:person.01026611221.88 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
161 schema:familyName Torigian
162 schema:givenName Drew A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026611221.88
164 rdf:type schema:Person
165 sg:person.01042154521.46 schema:affiliation Ned07c50f205e43ad895b24eaa3df7c66
166 schema:familyName Basu
167 schema:givenName Sandip
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042154521.46
169 rdf:type schema:Person
170 sg:person.01042766404.29 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
171 schema:familyName Saboury
172 schema:givenName Babak
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042766404.29
174 rdf:type schema:Person
175 sg:person.013064447257.07 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
176 schema:familyName Alavi
177 schema:givenName Abass
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07
179 rdf:type schema:Person
180 sg:pub.10.1007/s00259-002-1055-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015614585
181 https://doi.org/10.1007/s00259-002-1055-3
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00259-007-0459-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041392821
184 https://doi.org/10.1007/s00259-007-0459-5
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00259-008-0740-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010321084
187 https://doi.org/10.1007/s00259-008-0740-2
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s11307-009-0203-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037406558
190 https://doi.org/10.1007/s11307-009-0203-6
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s11307-009-0212-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052292004
193 https://doi.org/10.1007/s11307-009-0212-5
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s11307-009-0258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018798205
196 https://doi.org/10.1007/s11307-009-0258-4
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/sj.bjc.6690105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046032445
199 https://doi.org/10.1038/sj.bjc.6690105
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/sj.gt.3302974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024084915
202 https://doi.org/10.1038/sj.gt.3302974
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1748-717x-4-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027913866
205 https://doi.org/10.1186/1748-717x-4-35
206 rdf:type schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1074508160 schema:CreativeWork
208 https://app.dimensions.ai/details/publication/pub.1075213866 schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1077179889 schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1082794936 schema:CreativeWork
211 https://doi.org/10.1016/j.ejcts.2008.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046394003
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ijrobp.2004.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007308446
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ijrobp.2004.06.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048457335
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.jtcvs.2004.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013066570
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.lungcan.2006.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021133527
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.lungcan.2007.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020889794
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.lungcan.2009.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008143800
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.nic.2009.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051102151
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.nucmedbio.2006.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032932334
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.nucmedbio.2009.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023740915
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.rcl.2004.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025440260
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0022-5223(03)00207-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003783638
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0022-5223(99)70469-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035413157
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0025-6196(12)65411-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005403029
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0169-5002(05)81557-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012915996
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1053/j.semnuclmed.2007.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038419506
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1053/sonc.2002.30228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006310525
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1055/s-2008-1039314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057534721
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1056/nejmoa022136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013098511
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1067/mtc.2000.106529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022847198
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/annonc/mdh059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004445038
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/annonc/mdj073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028183080
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1097/01.jto.0000263706.23579.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012287031
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1097/jto.0b013e3181c0a7ff schema:sameAs https://app.dimensions.ai/details/publication/pub.1015130340
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1097/jto.0b013e3181cbf465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024471023
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1097/mnm.0b013e3282f813a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004343508
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1097/rli.0b013e3181817b3d schema:sameAs https://app.dimensions.ai/details/publication/pub.1035183351
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1136/thorax.58.12.1077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016006964
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1148/radiol.2382041977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077179766
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1148/rg.241035058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029001697
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1158/1078-0432.ccr-07-0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006344714
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1200/jco.2003.11.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203976
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1200/jco.2006.06.8999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033791709
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1378/chest.103.4_supplement.373s schema:sameAs https://app.dimensions.ai/details/publication/pub.1038691711
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1378/chest.108.4.1122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049508829
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1378/chest.114.3.713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018129528
282 rdf:type schema:CreativeWork
283 https://doi.org/10.2214/ajr.154.3.2106209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069315936
284 rdf:type schema:CreativeWork
285 https://doi.org/10.2214/ajr.172.4.10587144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069322319
286 rdf:type schema:CreativeWork
287 https://doi.org/10.2967/jnumed.107.042333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026388368
288 rdf:type schema:CreativeWork
289 https://doi.org/10.3413/nukmed-0091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071311785
290 rdf:type schema:CreativeWork
291 https://doi.org/10.3816/clc.2009.n.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046457916
292 rdf:type schema:CreativeWork
293 https://www.grid.ac/institutes/grid.411115.1 schema:alternateName Hospital of the University of Pennsylvania
294 schema:name Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...