DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-01-10

AUTHORS

Guanshi Zhang, Jialing Zhang, Rachel J. DeHoog, Subramaniam Pennathur, Christopher R. Anderton, Manjeri A. Venkatachalam, Theodore Alexandrov, Livia S. Eberlin, Kumar Sharma

ABSTRACT

IntroductionDiabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported.ObjectivesIn this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD.MethodsDESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6).ResultsMultivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P < 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z’s in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls.ConclusionResults from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD. More... »

PAGES

11

References to SciGraph publications

  • 2012-06-16. Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2013-03-07. Sphingolipids in Obesity, Type 2 Diabetes, and Metabolic Disease in SPHINGOLIPIDS IN DISEASE
  • 2008-04-21. Cardiolipin, the heart of mitochondrial metabolism in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2013-03-28. MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2017-03-06. Metabolomics for clinical use and research in chronic kidney disease in NATURE REVIEWS NEPHROLOGY
  • 2016-11-14. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry in NATURE METHODS
  • 2017-02-28. Detection of Metastatic Breast and Thyroid Cancer in Lymph Nodes by Desorption Electrospray Ionization Mass Spectrometry Imaging in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2011-05-11. Oxidative Stress and Diabetic Kidney Disease in CURRENT DIABETES REPORTS
  • 2015-05-10. The Evolving Understanding of the Contribution of Lipid Metabolism to Diabetic Kidney Disease in CURRENT DIABETES REPORTS
  • 2016-11-14. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution in NATURE METHODS
  • 1990-05. Celiptium-induced nephrotoxicity and lipid peroxidation in rat renal cortex in CANCER CHEMOTHERAPY AND PHARMACOLOGY
  • 2016-04-10. Imaging Mass Spectrometry Reveals a Decrease of Cardiolipin in the Kidney of NASH Model Mice in ANALYTICAL SCIENCES
  • 2014-12-01. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development in NATURE MEDICINE
  • 2017-02-03. Mass Spectrometry Imaging of Kidney Tissue Sections of Rat Subjected to Unilateral Ureteral Obstruction in SCIENTIFIC REPORTS
  • 2012-10-10. A cross-platform toolkit for mass spectrometry and proteomics in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11306-020-1637-8

    DOI

    http://dx.doi.org/10.1007/s11306-020-1637-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1124007782

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31925564


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cardiolipins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diabetic Nephropathies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fatty Acids, Omega-3", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney Tubules, Proximal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolic Networks and Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred C57BL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mitochondrial Membranes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pseudouridine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Mass, Electrospray Ionization", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.414059.d", 
              "name": [
                "Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA", 
                "Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Guanshi", 
            "id": "sg:person.012422343537.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012422343537.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, The University of Texas at Austin, Austin, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Chemistry, The University of Texas at Austin, Austin, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jialing", 
            "id": "sg:person.01176734035.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176734035.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, The University of Texas at Austin, Austin, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Chemistry, The University of Texas at Austin, Austin, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DeHoog", 
            "givenName": "Rachel J.", 
            "id": "sg:person.016502773557.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502773557.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pennathur", 
            "givenName": "Subramaniam", 
            "id": "sg:person.0676051144.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676051144.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451303.0", 
              "name": [
                "Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anderton", 
            "givenName": "Christopher R.", 
            "id": "sg:person.01154745155.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154745155.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.267309.9", 
              "name": [
                "Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Venkatachalam", 
            "givenName": "Manjeri A.", 
            "id": "sg:person.01225547501.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225547501.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany", 
                "Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alexandrov", 
            "givenName": "Theodore", 
            "id": "sg:person.01204640152.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204640152.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, The University of Texas at Austin, Austin, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Chemistry, The University of Texas at Austin, Austin, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eberlin", 
            "givenName": "Livia S.", 
            "id": "sg:person.01066467666.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066467666.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.414059.d", 
              "name": [
                "Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA", 
                "Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharma", 
            "givenName": "Kumar", 
            "id": "sg:person.015147461377.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147461377.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11892-011-0196-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030597285", 
              "https://doi.org/10.1007/s11892-011-0196-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13361-013-0607-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018377019", 
              "https://doi.org/10.1007/s13361-013-0607-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13361-016-1570-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084036986", 
              "https://doi.org/10.1007/s13361-016-1570-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrneph.2017.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129792", 
              "https://doi.org/10.1038/nrneph.2017.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-012-6173-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039688467", 
              "https://doi.org/10.1007/s00216-012-6173-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2116/analsci.32.473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009953368", 
              "https://doi.org/10.2116/analsci.32.473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00685710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024445576", 
              "https://doi.org/10.1007/bf00685710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep41954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083525948", 
              "https://doi.org/10.1038/srep41954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041207870", 
              "https://doi.org/10.1038/nbt.2377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11892-015-0611-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048068342", 
              "https://doi.org/10.1007/s11892-015-0611-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023732847", 
              "https://doi.org/10.1038/nmeth.4072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053191285", 
              "https://doi.org/10.1038/nmeth.4071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.3762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045967711", 
              "https://doi.org/10.1038/nm.3762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-1511-4_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043652819", 
              "https://doi.org/10.1007/978-3-7091-1511-4_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-008-8030-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047496757", 
              "https://doi.org/10.1007/s00018-008-8030-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-01-10", 
        "datePublishedReg": "2020-01-10", 
        "description": "IntroductionDiabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported.ObjectivesIn this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD.MethodsDESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17\u00a0weeks of age) of type 1 diabetes (T1D, n\u2009=\u20095) and heathy controls (n\u2009=\u20096).ResultsMultivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P\u2009<\u20090.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z\u2019s in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls.ConclusionResults from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11306-020-1637-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9212853", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7028650", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439056", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8634423", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5124857", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2621225", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439053", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4729294", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1036887", 
            "issn": [
              "1573-3882", 
              "1573-3890"
            ], 
            "name": "Metabolomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "cortical proximal tubules", 
          "proximal tubules", 
          "mouse model", 
          "plasma metabolomics study", 
          "groups of mice", 
          "type 1 diabetes", 
          "kidney cortical tissue", 
          "renal proximal tubules", 
          "lipid abnormalities", 
          "diabetic patients", 
          "prevalent complication", 
          "high morbidity", 
          "heathy controls", 
          "kidney disease", 
          "healthy controls", 
          "ResultsMultivariate analysis", 
          "untargeted metabolomics analysis", 
          "kidney tissue", 
          "cortical tissue", 
          "DKD", 
          "normal mitochondrial function", 
          "potential key role", 
          "mitochondrial function", 
          "metabolomic analysis", 
          "mice", 
          "tubules", 
          "fatty acids", 
          "metabolomics studies", 
          "current study", 
          "tissue", 
          "ionization mass spectrometry imaging", 
          "limited information", 
          "DESI-MSI", 
          "morbidity", 
          "complications", 
          "patients", 
          "diabetes", 
          "T1D", 
          "mortality", 
          "kidney", 
          "fundamental pathways", 
          "abnormalities", 
          "disease", 
          "urine", 
          "key role", 
          "ConclusionResults", 
          "control", 
          "cardiolipin", 
          "study", 
          "spectrometry imaging", 
          "novel bioinformatics platform", 
          "metabolites", 
          "imaging", 
          "membrane components", 
          "bioinformatics platform", 
          "group", 
          "metabolome", 
          "pathway", 
          "powerful new tool", 
          "relative abundance", 
          "new tool", 
          "role", 
          "accumulation", 
          "analysis", 
          "acid", 
          "pseudouridine", 
          "function", 
          "mitochondrial membrane components", 
          "insights", 
          "valuable insights", 
          "model", 
          "information", 
          "tool", 
          "basis", 
          "components", 
          "abundance", 
          "clusters", 
          "distribution", 
          "RNA structure", 
          "platform", 
          "work", 
          "spatial distribution", 
          "technology", 
          "structure", 
          "metaspace", 
          "desorption"
        ], 
        "name": "DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules", 
        "pagination": "11", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1124007782"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11306-020-1637-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31925564"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11306-020-1637-8", 
          "https://app.dimensions.ai/details/publication/pub.1124007782"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_867.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11306-020-1637-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-020-1637-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-020-1637-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-020-1637-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-020-1637-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    352 TRIPLES      21 PREDICATES      140 URIs      117 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11306-020-1637-8 schema:about N04efaf59ab2d4b4485e516eb96fef360
    2 N07abf86bb6dc49049043bfd2babf52d0
    3 N195b9e3a8ea349428f7963132b0f6e64
    4 N2c157b1b42844678ac989334af1765cd
    5 N92edfb5d43f24bc5b31315c1c9fd206c
    6 Na44e04e511a14d92b52af25b6740d942
    7 Nbd4c4e0d8a4c491d8eaa8242cd225441
    8 Nce323560ee874b679a9c9fb793d70cf0
    9 Nd7bc1a803ba045a49339029b3be696b7
    10 Nd81ec55d525c434cb21511d093355bf1
    11 Nec57dda0ff71440ebf34032bd9b42869
    12 Nf225a5c5f32b4aa78832c4ae7dda67aa
    13 Nf668e69046a2492587ec7477d64f36c9
    14 Nf67a3e01365648c6a38d2eec48f0ba4f
    15 anzsrc-for:11
    16 anzsrc-for:1103
    17 schema:author N477cb6547c274d5488574a36f587e7e1
    18 schema:citation sg:pub.10.1007/978-3-7091-1511-4_19
    19 sg:pub.10.1007/bf00685710
    20 sg:pub.10.1007/s00018-008-8030-5
    21 sg:pub.10.1007/s00216-012-6173-6
    22 sg:pub.10.1007/s11892-011-0196-9
    23 sg:pub.10.1007/s11892-015-0611-8
    24 sg:pub.10.1007/s13361-013-0607-z
    25 sg:pub.10.1007/s13361-016-1570-2
    26 sg:pub.10.1038/nbt.2377
    27 sg:pub.10.1038/nm.3762
    28 sg:pub.10.1038/nmeth.4071
    29 sg:pub.10.1038/nmeth.4072
    30 sg:pub.10.1038/nrneph.2017.30
    31 sg:pub.10.1038/srep41954
    32 sg:pub.10.2116/analsci.32.473
    33 schema:datePublished 2020-01-10
    34 schema:datePublishedReg 2020-01-10
    35 schema:description IntroductionDiabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported.ObjectivesIn this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD.MethodsDESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6).ResultsMultivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P < 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z’s in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls.ConclusionResults from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N3afca5b12f1341bc8f77644375585ca3
    39 N64e3b91369a44886bbfcdecaaa030780
    40 sg:journal.1036887
    41 schema:keywords ConclusionResults
    42 DESI-MSI
    43 DKD
    44 RNA structure
    45 ResultsMultivariate analysis
    46 T1D
    47 abnormalities
    48 abundance
    49 accumulation
    50 acid
    51 analysis
    52 basis
    53 bioinformatics platform
    54 cardiolipin
    55 clusters
    56 complications
    57 components
    58 control
    59 cortical proximal tubules
    60 cortical tissue
    61 current study
    62 desorption
    63 diabetes
    64 diabetic patients
    65 disease
    66 distribution
    67 fatty acids
    68 function
    69 fundamental pathways
    70 group
    71 groups of mice
    72 healthy controls
    73 heathy controls
    74 high morbidity
    75 imaging
    76 information
    77 insights
    78 ionization mass spectrometry imaging
    79 key role
    80 kidney
    81 kidney cortical tissue
    82 kidney disease
    83 kidney tissue
    84 limited information
    85 lipid abnormalities
    86 membrane components
    87 metabolites
    88 metabolome
    89 metabolomic analysis
    90 metabolomics studies
    91 metaspace
    92 mice
    93 mitochondrial function
    94 mitochondrial membrane components
    95 model
    96 morbidity
    97 mortality
    98 mouse model
    99 new tool
    100 normal mitochondrial function
    101 novel bioinformatics platform
    102 pathway
    103 patients
    104 plasma metabolomics study
    105 platform
    106 potential key role
    107 powerful new tool
    108 prevalent complication
    109 proximal tubules
    110 pseudouridine
    111 relative abundance
    112 renal proximal tubules
    113 role
    114 spatial distribution
    115 spectrometry imaging
    116 structure
    117 study
    118 technology
    119 tissue
    120 tool
    121 tubules
    122 type 1 diabetes
    123 untargeted metabolomics analysis
    124 urine
    125 valuable insights
    126 work
    127 schema:name DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules
    128 schema:pagination 11
    129 schema:productId N0ebb111c1830400a9ed11bfd10e0f33b
    130 N8f083490bcd74a14ad9e539bd3075cf4
    131 N9421f6e7721c476194603b1b15ab48a7
    132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124007782
    133 https://doi.org/10.1007/s11306-020-1637-8
    134 schema:sdDatePublished 2022-10-01T06:47
    135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    136 schema:sdPublisher N36c1a9b6ffc0470dbe2fa40acde864c3
    137 schema:url https://doi.org/10.1007/s11306-020-1637-8
    138 sgo:license sg:explorer/license/
    139 sgo:sdDataset articles
    140 rdf:type schema:ScholarlyArticle
    141 N04efaf59ab2d4b4485e516eb96fef360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Diabetic Nephropathies
    143 rdf:type schema:DefinedTerm
    144 N07abf86bb6dc49049043bfd2babf52d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Animals
    146 rdf:type schema:DefinedTerm
    147 N0ebb111c1830400a9ed11bfd10e0f33b schema:name pubmed_id
    148 schema:value 31925564
    149 rdf:type schema:PropertyValue
    150 N195b9e3a8ea349428f7963132b0f6e64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Mice, Inbred C57BL
    152 rdf:type schema:DefinedTerm
    153 N1964a05427564b96845e3eccccadd01f rdf:first sg:person.016502773557.14
    154 rdf:rest N980057f9d50d4bc5aa82cdc1c4244987
    155 N2c157b1b42844678ac989334af1765cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Computational Biology
    157 rdf:type schema:DefinedTerm
    158 N36c1a9b6ffc0470dbe2fa40acde864c3 schema:name Springer Nature - SN SciGraph project
    159 rdf:type schema:Organization
    160 N3afca5b12f1341bc8f77644375585ca3 schema:issueNumber 1
    161 rdf:type schema:PublicationIssue
    162 N3c09c199d3f4430d872642be791fd6bb rdf:first sg:person.01204640152.10
    163 rdf:rest Ncf5dfc094c124f8385b29b1a82a3dba9
    164 N477cb6547c274d5488574a36f587e7e1 rdf:first sg:person.012422343537.12
    165 rdf:rest Nf1435446196b4de3a40689613bee00f6
    166 N64e3b91369a44886bbfcdecaaa030780 schema:volumeNumber 16
    167 rdf:type schema:PublicationVolume
    168 N8f083490bcd74a14ad9e539bd3075cf4 schema:name dimensions_id
    169 schema:value pub.1124007782
    170 rdf:type schema:PropertyValue
    171 N92edfb5d43f24bc5b31315c1c9fd206c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Male
    173 rdf:type schema:DefinedTerm
    174 N9421f6e7721c476194603b1b15ab48a7 schema:name doi
    175 schema:value 10.1007/s11306-020-1637-8
    176 rdf:type schema:PropertyValue
    177 N980057f9d50d4bc5aa82cdc1c4244987 rdf:first sg:person.0676051144.82
    178 rdf:rest Ne4e409f53afd44918f45711f31742d39
    179 Na44e04e511a14d92b52af25b6740d942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Pseudouridine
    181 rdf:type schema:DefinedTerm
    182 Nbd4c4e0d8a4c491d8eaa8242cd225441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Metabolic Networks and Pathways
    184 rdf:type schema:DefinedTerm
    185 Nce323560ee874b679a9c9fb793d70cf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Mitochondrial Membranes
    187 rdf:type schema:DefinedTerm
    188 Ncf5dfc094c124f8385b29b1a82a3dba9 rdf:first sg:person.01066467666.78
    189 rdf:rest Nd69533df2d55437f8e4cb68fdf012296
    190 Nd69533df2d55437f8e4cb68fdf012296 rdf:first sg:person.015147461377.46
    191 rdf:rest rdf:nil
    192 Nd7bc1a803ba045a49339029b3be696b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Kidney Tubules, Proximal
    194 rdf:type schema:DefinedTerm
    195 Nd81ec55d525c434cb21511d093355bf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Metabolome
    197 rdf:type schema:DefinedTerm
    198 Ne4e409f53afd44918f45711f31742d39 rdf:first sg:person.01154745155.77
    199 rdf:rest Ne6f94c6a8e7b41ef8f527b9e7863c748
    200 Ne6f94c6a8e7b41ef8f527b9e7863c748 rdf:first sg:person.01225547501.90
    201 rdf:rest N3c09c199d3f4430d872642be791fd6bb
    202 Nec57dda0ff71440ebf34032bd9b42869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Cardiolipins
    204 rdf:type schema:DefinedTerm
    205 Nf1435446196b4de3a40689613bee00f6 rdf:first sg:person.01176734035.73
    206 rdf:rest N1964a05427564b96845e3eccccadd01f
    207 Nf225a5c5f32b4aa78832c4ae7dda67aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Fatty Acids, Omega-3
    209 rdf:type schema:DefinedTerm
    210 Nf668e69046a2492587ec7477d64f36c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Mice
    212 rdf:type schema:DefinedTerm
    213 Nf67a3e01365648c6a38d2eec48f0ba4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Spectrometry, Mass, Electrospray Ionization
    215 rdf:type schema:DefinedTerm
    216 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Medical and Health Sciences
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Clinical Sciences
    221 rdf:type schema:DefinedTerm
    222 sg:grant.2439053 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    223 rdf:type schema:MonetaryGrant
    224 sg:grant.2439056 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    225 rdf:type schema:MonetaryGrant
    226 sg:grant.2621225 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    227 rdf:type schema:MonetaryGrant
    228 sg:grant.4729294 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    229 rdf:type schema:MonetaryGrant
    230 sg:grant.5124857 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.7028650 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    233 rdf:type schema:MonetaryGrant
    234 sg:grant.8634423 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    235 rdf:type schema:MonetaryGrant
    236 sg:grant.9212853 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-020-1637-8
    237 rdf:type schema:MonetaryGrant
    238 sg:journal.1036887 schema:issn 1573-3882
    239 1573-3890
    240 schema:name Metabolomics
    241 schema:publisher Springer Nature
    242 rdf:type schema:Periodical
    243 sg:person.01066467666.78 schema:affiliation grid-institutes:grid.89336.37
    244 schema:familyName Eberlin
    245 schema:givenName Livia S.
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066467666.78
    247 rdf:type schema:Person
    248 sg:person.01154745155.77 schema:affiliation grid-institutes:grid.451303.0
    249 schema:familyName Anderton
    250 schema:givenName Christopher R.
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154745155.77
    252 rdf:type schema:Person
    253 sg:person.01176734035.73 schema:affiliation grid-institutes:grid.89336.37
    254 schema:familyName Zhang
    255 schema:givenName Jialing
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176734035.73
    257 rdf:type schema:Person
    258 sg:person.01204640152.10 schema:affiliation grid-institutes:grid.266100.3
    259 schema:familyName Alexandrov
    260 schema:givenName Theodore
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204640152.10
    262 rdf:type schema:Person
    263 sg:person.01225547501.90 schema:affiliation grid-institutes:grid.267309.9
    264 schema:familyName Venkatachalam
    265 schema:givenName Manjeri A.
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225547501.90
    267 rdf:type schema:Person
    268 sg:person.012422343537.12 schema:affiliation grid-institutes:grid.414059.d
    269 schema:familyName Zhang
    270 schema:givenName Guanshi
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012422343537.12
    272 rdf:type schema:Person
    273 sg:person.015147461377.46 schema:affiliation grid-institutes:grid.414059.d
    274 schema:familyName Sharma
    275 schema:givenName Kumar
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147461377.46
    277 rdf:type schema:Person
    278 sg:person.016502773557.14 schema:affiliation grid-institutes:grid.89336.37
    279 schema:familyName DeHoog
    280 schema:givenName Rachel J.
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502773557.14
    282 rdf:type schema:Person
    283 sg:person.0676051144.82 schema:affiliation grid-institutes:grid.214458.e
    284 schema:familyName Pennathur
    285 schema:givenName Subramaniam
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676051144.82
    287 rdf:type schema:Person
    288 sg:pub.10.1007/978-3-7091-1511-4_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043652819
    289 https://doi.org/10.1007/978-3-7091-1511-4_19
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/bf00685710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024445576
    292 https://doi.org/10.1007/bf00685710
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s00018-008-8030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047496757
    295 https://doi.org/10.1007/s00018-008-8030-5
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1007/s00216-012-6173-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039688467
    298 https://doi.org/10.1007/s00216-012-6173-6
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s11892-011-0196-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030597285
    301 https://doi.org/10.1007/s11892-011-0196-9
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/s11892-015-0611-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048068342
    304 https://doi.org/10.1007/s11892-015-0611-8
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s13361-013-0607-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018377019
    307 https://doi.org/10.1007/s13361-013-0607-z
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s13361-016-1570-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084036986
    310 https://doi.org/10.1007/s13361-016-1570-2
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nbt.2377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041207870
    313 https://doi.org/10.1038/nbt.2377
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nm.3762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045967711
    316 https://doi.org/10.1038/nm.3762
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nmeth.4071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191285
    319 https://doi.org/10.1038/nmeth.4071
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/nmeth.4072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023732847
    322 https://doi.org/10.1038/nmeth.4072
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/nrneph.2017.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129792
    325 https://doi.org/10.1038/nrneph.2017.30
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/srep41954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083525948
    328 https://doi.org/10.1038/srep41954
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.2116/analsci.32.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009953368
    331 https://doi.org/10.2116/analsci.32.473
    332 rdf:type schema:CreativeWork
    333 grid-institutes:grid.214458.e schema:alternateName Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
    334 schema:name Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
    335 rdf:type schema:Organization
    336 grid-institutes:grid.266100.3 schema:alternateName Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
    337 schema:name Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
    338 Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    339 rdf:type schema:Organization
    340 grid-institutes:grid.267309.9 schema:alternateName Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, USA
    341 schema:name Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, USA
    342 rdf:type schema:Organization
    343 grid-institutes:grid.414059.d schema:alternateName Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
    344 schema:name Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
    345 Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
    346 rdf:type schema:Organization
    347 grid-institutes:grid.451303.0 schema:alternateName Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
    348 schema:name Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
    349 rdf:type schema:Organization
    350 grid-institutes:grid.89336.37 schema:alternateName Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
    351 schema:name Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
    352 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...