Global testing of shifts in metabolic phenotype View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Parastoo Fazelzadeh, Huub C. J. Hoefsloot, Thomas Hankemeier, Jasper Most, Sander Kersten, Ellen E. Blaak, Mark Boekschoten, John van Duynhoven

ABSTRACT

INTRODUCTION: Current metabolomics approaches to unravel impact of diet- or lifestyle induced phenotype variation and shifts predominantly deploy univariate or multivariate approaches, with a posteriori interpretation at pathway level. This however often provides only a fragmented view on the involved metabolic pathways. OBJECTIVES: To demonstrate the feasibility of using Goeman's global test (GGT) for assessment of variation and shifts in metabolic phenotype at the level of a priori defined pathways. METHODS: Two intervention studies with identified phenotype variations and shifts were examined. In a weight loss (WL) intervention study obese subjects received a mixed meal challenge before and after WL. In a polyphenol (PP) intervention study obese subjects received a high fat mixed meal challenge (61E% fat) before and after a PP intervention. Plasma samples were obtained at fasting and during the postprandial response. Besides WL- and PP-induced phenotype shifts, also correlation of plasma metabolome with phenotype descriptors was assessed at pathway level. The plasma metabolome covered organic acids, amino acids, biogenic amines, acylcarnitines and oxylipins. RESULTS: For the population of the WL study, GGT revealed that HOMA correlated with the fasting levels of the TCA cycle, BCAA catabolism, the lactate, arginine-proline and phenylalanine-tyrosine pathways. For the population of the PP study, HOMA correlated with fasting metabolite levels of TCA cycle, fatty acid oxidation and phenylalanine-tyrosine pathways. These correlations were more pronounced for metabolic pathways in the fasting state, than during the postprandial response. The effect of the WL and PP intervention on a priori defined metabolic pathways, and correlation of pathways with insulin sensitivity as described by HOMA was in line with previous studies. CONCLUSION: GGT confirmed earlier biological findings in a hypothesis led approach. A main advantage of GGT is that it provides a direct view on involvement of a priori defined pathways in phenotype shifts. More... »

PAGES

139

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-018-1435-8

DOI

http://dx.doi.org/10.1007/s11306-018-1435-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107401122

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30830386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TiFN", 
          "id": "https://www.grid.ac/institutes/grid.420129.c", 
          "name": [
            "Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands", 
            "Top Institute Food and Nutrition, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fazelzadeh", 
        "givenName": "Parastoo", 
        "id": "sg:person.0631124423.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631124423.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Swammerdam Institute of Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoefsloot", 
        "givenName": "Huub C. J.", 
        "id": "sg:person.012737547773.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737547773.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre", 
          "id": "https://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Division for Analytical Biosciences, Leiden University, Leiden, The Netherlands", 
            "Netherlands Metabolomics Centre, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hankemeier", 
        "givenName": "Thomas", 
        "id": "sg:person.01042162625.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042162625.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University", 
          "id": "https://www.grid.ac/institutes/grid.5012.6", 
          "name": [
            "Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Most", 
        "givenName": "Jasper", 
        "id": "sg:person.0722452224.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722452224.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TiFN", 
          "id": "https://www.grid.ac/institutes/grid.420129.c", 
          "name": [
            "Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands", 
            "Top Institute Food and Nutrition, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kersten", 
        "givenName": "Sander", 
        "id": "sg:person.01254672457.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254672457.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University", 
          "id": "https://www.grid.ac/institutes/grid.5012.6", 
          "name": [
            "Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blaak", 
        "givenName": "Ellen E.", 
        "id": "sg:person.01207575720.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207575720.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TiFN", 
          "id": "https://www.grid.ac/institutes/grid.420129.c", 
          "name": [
            "Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands", 
            "Top Institute Food and Nutrition, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boekschoten", 
        "givenName": "Mark", 
        "id": "sg:person.01004605632.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004605632.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unilever (Netherlands)", 
          "id": "https://www.grid.ac/institutes/grid.10761.31", 
          "name": [
            "Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands", 
            "Netherlands Metabolomics Centre, Leiden, The Netherlands", 
            "Unilever R&D, Vlaardingen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Duynhoven", 
        "givenName": "John", 
        "id": "sg:person.011736172661.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011736172661.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11306-014-0673-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001675467", 
          "https://doi.org/10.1007/s11306-014-0673-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12263-014-0423-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008045525", 
          "https://doi.org/10.1007/s12263-014-0423-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12263-014-0423-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008045525", 
          "https://doi.org/10.1007/s12263-014-0423-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0306-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010999574", 
          "https://doi.org/10.1007/s11306-011-0306-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2009.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013384337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-0495(03)00155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-0495(03)00155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-014-7752-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018222706", 
          "https://doi.org/10.1007/s00216-014-7752-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019958062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2011.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021913806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114507803400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022311606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114507803400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022311606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.300.6725.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023642592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.d4163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025723877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028128110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031967674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-789x.2008.00544.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035141919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2011.12.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040776114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041933952", 
          "https://doi.org/10.1186/1471-2105-9-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041933952", 
          "https://doi.org/10.1186/1471-2105-9-303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0320-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046922882", 
          "https://doi.org/10.1007/s11306-011-0320-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.11-198093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047473398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2012.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053615992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr900499r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056295009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.115.122937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071753711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.116.143552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071754001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-018-1328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101340187", 
          "https://doi.org/10.1007/s11306-018-1328-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-018-1328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101340187", 
          "https://doi.org/10.1007/s11306-018-1328-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-018-1328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101340187", 
          "https://doi.org/10.1007/s11306-018-1328-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-018-1328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101340187", 
          "https://doi.org/10.1007/s11306-018-1328-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-018-1328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101340187", 
          "https://doi.org/10.1007/s11306-018-1328-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.201800330r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103761210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.201800330r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103761210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.201800330r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103761210"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "INTRODUCTION: Current metabolomics approaches to unravel impact of diet- or lifestyle induced phenotype variation and shifts predominantly deploy univariate or multivariate approaches, with a posteriori interpretation at pathway level. This however often provides only a fragmented view on the involved metabolic pathways.\nOBJECTIVES: To demonstrate the feasibility of using Goeman's global test (GGT) for assessment of variation and shifts in metabolic phenotype at the level of a priori defined pathways.\nMETHODS: Two intervention studies with identified phenotype variations and shifts were examined. In a weight loss (WL) intervention study obese subjects received a mixed meal challenge before and after WL. In a polyphenol (PP) intervention study obese subjects received a high fat mixed meal challenge (61E% fat) before and after a PP intervention. Plasma samples were obtained at fasting and during the postprandial response. Besides WL- and PP-induced phenotype shifts, also correlation of plasma metabolome with phenotype descriptors was assessed at pathway level. The plasma metabolome covered organic acids, amino acids, biogenic amines, acylcarnitines and oxylipins.\nRESULTS: For the population of the WL study, GGT revealed that HOMA correlated with the fasting levels of the TCA cycle, BCAA catabolism, the lactate, arginine-proline and phenylalanine-tyrosine pathways. For the population of the PP study, HOMA correlated with fasting metabolite levels of TCA cycle, fatty acid oxidation and phenylalanine-tyrosine pathways. These correlations were more pronounced for metabolic pathways in the fasting state, than during the postprandial response. The effect of the WL and PP intervention on a priori defined metabolic pathways, and correlation of pathways with insulin sensitivity as described by HOMA was in line with previous studies.\nCONCLUSION: GGT confirmed earlier biological findings in a hypothesis led approach. A main advantage of GGT is that it provides a direct view on involvement of a priori defined pathways in phenotype shifts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-018-1435-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Global testing of shifts in metabolic phenotype", 
    "pagination": "139", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56f299fb3260449539f13cf329ab12812a210702f00ec81183354c1f70eb1986"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30830386"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101274889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-018-1435-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107401122"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-018-1435-8", 
      "https://app.dimensions.ai/details/publication/pub.1107401122"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11728_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11306-018-1435-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1435-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1435-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1435-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1435-8'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-018-1435-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N397edac2750440499a26f38421bab4a3
4 schema:citation sg:pub.10.1007/s00216-014-7752-5
5 sg:pub.10.1007/s11306-011-0306-3
6 sg:pub.10.1007/s11306-011-0320-5
7 sg:pub.10.1007/s11306-014-0673-7
8 sg:pub.10.1007/s11306-018-1328-x
9 sg:pub.10.1007/s12263-014-0423-5
10 sg:pub.10.1186/1471-2105-9-303
11 https://doi.org/10.1016/j.aca.2011.12.051
12 https://doi.org/10.1016/j.cmet.2009.02.002
13 https://doi.org/10.1016/j.cmet.2012.01.024
14 https://doi.org/10.1016/j.metabol.2011.06.008
15 https://doi.org/10.1016/s0026-0495(03)00155-0
16 https://doi.org/10.1017/s0007114507803400
17 https://doi.org/10.1021/pr900499r
18 https://doi.org/10.1093/bioinformatics/btg382
19 https://doi.org/10.1093/bioinformatics/btn209
20 https://doi.org/10.1093/nar/28.1.27
21 https://doi.org/10.1093/nar/gkj102
22 https://doi.org/10.1093/nar/gkp896
23 https://doi.org/10.1096/fj.11-198093
24 https://doi.org/10.1096/fj.201800330r
25 https://doi.org/10.1111/j.1467-789x.2008.00544.x
26 https://doi.org/10.1136/bmj.300.6725.680
27 https://doi.org/10.1136/bmj.d4163
28 https://doi.org/10.3945/ajcn.115.122937
29 https://doi.org/10.3945/ajcn.116.143552
30 schema:datePublished 2018-10
31 schema:datePublishedReg 2018-10-01
32 schema:description INTRODUCTION: Current metabolomics approaches to unravel impact of diet- or lifestyle induced phenotype variation and shifts predominantly deploy univariate or multivariate approaches, with a posteriori interpretation at pathway level. This however often provides only a fragmented view on the involved metabolic pathways. OBJECTIVES: To demonstrate the feasibility of using Goeman's global test (GGT) for assessment of variation and shifts in metabolic phenotype at the level of a priori defined pathways. METHODS: Two intervention studies with identified phenotype variations and shifts were examined. In a weight loss (WL) intervention study obese subjects received a mixed meal challenge before and after WL. In a polyphenol (PP) intervention study obese subjects received a high fat mixed meal challenge (61E% fat) before and after a PP intervention. Plasma samples were obtained at fasting and during the postprandial response. Besides WL- and PP-induced phenotype shifts, also correlation of plasma metabolome with phenotype descriptors was assessed at pathway level. The plasma metabolome covered organic acids, amino acids, biogenic amines, acylcarnitines and oxylipins. RESULTS: For the population of the WL study, GGT revealed that HOMA correlated with the fasting levels of the TCA cycle, BCAA catabolism, the lactate, arginine-proline and phenylalanine-tyrosine pathways. For the population of the PP study, HOMA correlated with fasting metabolite levels of TCA cycle, fatty acid oxidation and phenylalanine-tyrosine pathways. These correlations were more pronounced for metabolic pathways in the fasting state, than during the postprandial response. The effect of the WL and PP intervention on a priori defined metabolic pathways, and correlation of pathways with insulin sensitivity as described by HOMA was in line with previous studies. CONCLUSION: GGT confirmed earlier biological findings in a hypothesis led approach. A main advantage of GGT is that it provides a direct view on involvement of a priori defined pathways in phenotype shifts.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N64ffae5bb2a24c90b677cbfa2d2e335b
37 N873fdbe5efa844d6b3cb46b7b952417b
38 sg:journal.1036887
39 schema:name Global testing of shifts in metabolic phenotype
40 schema:pagination 139
41 schema:productId N10ea3b3f9453482daa1aa196d0aba2b2
42 N7d97ae9eafb14fcba234f2c080705e73
43 N7e5b9b08f27545abacffaa1327e9e17c
44 Na1472cb5034a47e4ad60f0b7439f6d79
45 Nb0d6448ca10740cdad93c03522fe69c9
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107401122
47 https://doi.org/10.1007/s11306-018-1435-8
48 schema:sdDatePublished 2019-04-11T11:21
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nc06c8d3dd1d34ee5a2c9bff3d697a89f
51 schema:url https://link.springer.com/10.1007%2Fs11306-018-1435-8
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0b5986dd9b5744b8beb487fdd42877c4 rdf:first sg:person.01254672457.43
56 rdf:rest N3dafbe49fd5145cba84bbcc0f9a254f4
57 N10ea3b3f9453482daa1aa196d0aba2b2 schema:name dimensions_id
58 schema:value pub.1107401122
59 rdf:type schema:PropertyValue
60 N380211b56b8f4409a81362bcce3e2dfc rdf:first sg:person.01042162625.66
61 rdf:rest N95ceb8da015f42148c85ba39fe72ca20
62 N397edac2750440499a26f38421bab4a3 rdf:first sg:person.0631124423.97
63 rdf:rest Nc524d26705324673b4285e90160bf6a1
64 N3dafbe49fd5145cba84bbcc0f9a254f4 rdf:first sg:person.01207575720.40
65 rdf:rest N5d6ee750663147d986404924319cdf5c
66 N5d6ee750663147d986404924319cdf5c rdf:first sg:person.01004605632.34
67 rdf:rest Nd30008e5112e47f0a2f5df5cc5327ff8
68 N64ffae5bb2a24c90b677cbfa2d2e335b schema:volumeNumber 14
69 rdf:type schema:PublicationVolume
70 N7d97ae9eafb14fcba234f2c080705e73 schema:name doi
71 schema:value 10.1007/s11306-018-1435-8
72 rdf:type schema:PropertyValue
73 N7e5b9b08f27545abacffaa1327e9e17c schema:name readcube_id
74 schema:value 56f299fb3260449539f13cf329ab12812a210702f00ec81183354c1f70eb1986
75 rdf:type schema:PropertyValue
76 N873fdbe5efa844d6b3cb46b7b952417b schema:issueNumber 10
77 rdf:type schema:PublicationIssue
78 N95ceb8da015f42148c85ba39fe72ca20 rdf:first sg:person.0722452224.46
79 rdf:rest N0b5986dd9b5744b8beb487fdd42877c4
80 Na1472cb5034a47e4ad60f0b7439f6d79 schema:name pubmed_id
81 schema:value 30830386
82 rdf:type schema:PropertyValue
83 Nb0d6448ca10740cdad93c03522fe69c9 schema:name nlm_unique_id
84 schema:value 101274889
85 rdf:type schema:PropertyValue
86 Nc06c8d3dd1d34ee5a2c9bff3d697a89f schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nc524d26705324673b4285e90160bf6a1 rdf:first sg:person.012737547773.76
89 rdf:rest N380211b56b8f4409a81362bcce3e2dfc
90 Nd30008e5112e47f0a2f5df5cc5327ff8 rdf:first sg:person.011736172661.83
91 rdf:rest rdf:nil
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
96 schema:name Clinical Sciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1036887 schema:issn 1573-3882
99 1573-3890
100 schema:name Metabolomics
101 rdf:type schema:Periodical
102 sg:person.01004605632.34 schema:affiliation https://www.grid.ac/institutes/grid.420129.c
103 schema:familyName Boekschoten
104 schema:givenName Mark
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004605632.34
106 rdf:type schema:Person
107 sg:person.01042162625.66 schema:affiliation https://www.grid.ac/institutes/grid.450196.f
108 schema:familyName Hankemeier
109 schema:givenName Thomas
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042162625.66
111 rdf:type schema:Person
112 sg:person.011736172661.83 schema:affiliation https://www.grid.ac/institutes/grid.10761.31
113 schema:familyName van Duynhoven
114 schema:givenName John
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011736172661.83
116 rdf:type schema:Person
117 sg:person.01207575720.40 schema:affiliation https://www.grid.ac/institutes/grid.5012.6
118 schema:familyName Blaak
119 schema:givenName Ellen E.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207575720.40
121 rdf:type schema:Person
122 sg:person.01254672457.43 schema:affiliation https://www.grid.ac/institutes/grid.420129.c
123 schema:familyName Kersten
124 schema:givenName Sander
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254672457.43
126 rdf:type schema:Person
127 sg:person.012737547773.76 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
128 schema:familyName Hoefsloot
129 schema:givenName Huub C. J.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737547773.76
131 rdf:type schema:Person
132 sg:person.0631124423.97 schema:affiliation https://www.grid.ac/institutes/grid.420129.c
133 schema:familyName Fazelzadeh
134 schema:givenName Parastoo
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631124423.97
136 rdf:type schema:Person
137 sg:person.0722452224.46 schema:affiliation https://www.grid.ac/institutes/grid.5012.6
138 schema:familyName Most
139 schema:givenName Jasper
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722452224.46
141 rdf:type schema:Person
142 sg:pub.10.1007/s00216-014-7752-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018222706
143 https://doi.org/10.1007/s00216-014-7752-5
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11306-011-0306-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010999574
146 https://doi.org/10.1007/s11306-011-0306-3
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11306-011-0320-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046922882
149 https://doi.org/10.1007/s11306-011-0320-5
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11306-014-0673-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001675467
152 https://doi.org/10.1007/s11306-014-0673-7
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11306-018-1328-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101340187
155 https://doi.org/10.1007/s11306-018-1328-x
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s12263-014-0423-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008045525
158 https://doi.org/10.1007/s12263-014-0423-5
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-9-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041933952
161 https://doi.org/10.1186/1471-2105-9-303
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.aca.2011.12.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040776114
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.cmet.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089119
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.cmet.2012.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053615992
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.metabol.2011.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021913806
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0026-0495(03)00155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015038306
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1017/s0007114507803400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022311606
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/pr900499r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056295009
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/btg382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019958062
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/btn209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031967674
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/nar/gkj102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128110
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkp896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013384337
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1096/fj.11-198093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047473398
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1096/fj.201800330r schema:sameAs https://app.dimensions.ai/details/publication/pub.1103761210
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1467-789x.2008.00544.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035141919
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1136/bmj.300.6725.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023642592
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1136/bmj.d4163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025723877
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3945/ajcn.115.122937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071753711
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3945/ajcn.116.143552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071754001
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.10761.31 schema:alternateName Unilever (Netherlands)
202 schema:name Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
203 Netherlands Metabolomics Centre, Leiden, The Netherlands
204 Unilever R&D, Vlaardingen, The Netherlands
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.420129.c schema:alternateName TiFN
207 schema:name Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
208 Top Institute Food and Nutrition, Wageningen, The Netherlands
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.450196.f schema:alternateName Netherlands Metabolomics Centre
211 schema:name Division for Analytical Biosciences, Leiden University, Leiden, The Netherlands
212 Netherlands Metabolomics Centre, Leiden, The Netherlands
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.5012.6 schema:alternateName Maastricht University
215 schema:name Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.7177.6 schema:alternateName University of Amsterdam
218 schema:name Swammerdam Institute of Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...