Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Kieu Trinh Do, Simone Wahl, Johannes Raffler, Sophie Molnos, Michael Laimighofer, Jerzy Adamski, Karsten Suhre, Konstantin Strauch, Annette Peters, Christian Gieger, Claudia Langenberg, Isobel D. Stewart, Fabian J. Theis, Harald Grallert, Gabi Kastenmüller, Jan Krumsiek

ABSTRACT

BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of sample preparation. METHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the German KORA F4 cohort (n = 1750). We then evaluated 31 imputation methods in a simulation framework and biologically validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase statistical power while preserving the strength of established metabolic quantitative trait loci. RESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across all evaluation schemes and is computationally more tractable. CONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust results in all evaluation schemes. More... »

PAGES

128

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-018-1420-2

DOI

http://dx.doi.org/10.1007/s11306-018-1420-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107125467

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30830398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Computational Biology, Helmholtz-Zentrum M\u00fcnchen, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Do", 
        "givenName": "Kieu Trinh", 
        "id": "sg:person.01321230721.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321230721.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Center for Diabetes Research", 
          "id": "https://www.grid.ac/institutes/grid.452622.5", 
          "name": [
            "Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wahl", 
        "givenName": "Simone", 
        "id": "sg:person.01165012334.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165012334.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Bioinformatics and Systems Biology, Helmholtz-Zentrum M\u00fcnchen, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raffler", 
        "givenName": "Johannes", 
        "id": "sg:person.0611124647.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611124647.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Center for Diabetes Research", 
          "id": "https://www.grid.ac/institutes/grid.452622.5", 
          "name": [
            "Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molnos", 
        "givenName": "Sophie", 
        "id": "sg:person.0733367341.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733367341.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Computational Biology, Helmholtz-Zentrum M\u00fcnchen, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laimighofer", 
        "givenName": "Michael", 
        "id": "sg:person.01151055455.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151055455.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "Lehrstuhl f\u00fcr Experimentelle Genetik, Technische Universit\u00e4t M\u00fcnchen, Freising, Germany", 
            "German Center for Cardiovascular Disease Research (DZHK e.V.), Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adamski", 
        "givenName": "Jerzy", 
        "id": "sg:person.01227277645.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weill Cornell Medical College in Qatar", 
          "id": "https://www.grid.ac/institutes/grid.416973.e", 
          "name": [
            "Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suhre", 
        "givenName": "Karsten", 
        "id": "sg:person.01113051245.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113051245.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Institute of Genetic Epidemiology, Helmholtz Zentrum M\u00fcnchen\u2013German Research Center for Environmental Health, Neuherberg, Germany", 
            "Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strauch", 
        "givenName": "Konstantin", 
        "id": "sg:person.01352171051.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352171051.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peters", 
        "givenName": "Annette", 
        "id": "sg:person.01117072553.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117072553.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gieger", 
        "givenName": "Christian", 
        "id": "sg:person.011673465237.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673465237.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "MRC Epidemiology Unit, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langenberg", 
        "givenName": "Claudia", 
        "id": "sg:person.0616003437.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616003437.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "MRC Epidemiology Unit, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stewart", 
        "givenName": "Isobel D.", 
        "id": "sg:person.012522524561.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012522524561.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institute of Computational Biology, Helmholtz-Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "Department of Mathematics, Technische Universit\u00e4t M\u00fcnchen, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Theis", 
        "givenName": "Fabian J.", 
        "id": "sg:person.01304403211.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304403211.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Center for Diabetes Research", 
          "id": "https://www.grid.ac/institutes/grid.452622.5", 
          "name": [
            "Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grallert", 
        "givenName": "Harald", 
        "id": "sg:person.0712635675.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712635675.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany", 
            "Institute of Bioinformatics and Systems Biology, Helmholtz-Zentrum M\u00fcnchen, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kastenm\u00fcller", 
        "givenName": "Gabi", 
        "id": "sg:person.0620106734.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620106734.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Institute of Computational Biology, Helmholtz-Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany", 
            "Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krumsiek", 
        "givenName": "Jan", 
        "id": "sg:person.015172732374.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172732374.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/9780470316696.ch1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001522962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<0853:aoicde>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002662967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990330)18:6<681::aid-sim71>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004302244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990330)18:6<681::aid-sim71>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004302244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004849732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004849732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005259061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0366-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009770929", 
          "https://doi.org/10.1007/s11306-011-0366-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/metabo4020433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1002124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013665875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyw046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015591098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.201500352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018859162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023146162", 
          "https://doi.org/10.1038/nrm3314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.6.520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024880743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr501130a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027353330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206074463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027897548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206074463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027897548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029129105", 
          "https://doi.org/10.1186/1752-0509-5-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2015.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031489295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-9-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032846541", 
          "https://doi.org/10.1186/1471-2288-9-57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038725356", 
          "https://doi.org/10.1038/nrg3552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwf217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042251351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/455697a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044828120", 
          "https://doi.org/10.1038/455697a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044995197", 
          "https://doi.org/10.1038/ng.2982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-016-1030-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046586749", 
          "https://doi.org/10.1007/s11306-016-1030-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-016-1030-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046586749", 
          "https://doi.org/10.1007/s11306-016-1030-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac200786y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac200786y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es00082a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055487745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es053368a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es053368a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2005-858235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057441646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbw010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v045.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074513887", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080483750", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1547-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083851263", 
          "https://doi.org/10.1186/s12859-017-1547-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1547-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083851263", 
          "https://doi.org/10.1186/s12859-017-1547-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2017.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085939473"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of sample preparation.\nMETHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the German KORA F4 cohort (n\u2009=\u20091750). We then evaluated 31 imputation methods in a simulation framework and biologically validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase statistical power while preserving the strength of established metabolic quantitative trait loci.\nRESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across all evaluation schemes and is computationally more tractable.\nCONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust results in all evaluation schemes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-018-1420-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3797914", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560622", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies", 
    "pagination": "128", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c06b69beaca57915e802bb62d784c5dcc4e6f28058bd0534d0ffb0dbbf13bdb3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30830398"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101274889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-018-1420-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107125467"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-018-1420-2", 
      "https://app.dimensions.ai/details/publication/pub.1107125467"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11710_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11306-018-1420-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1420-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1420-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1420-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1420-2'


 

This table displays all metadata directly associated to this object as RDF triples.

315 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-018-1420-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nfb0559da488049e7bf3fd58f83d5e41e
4 schema:citation sg:pub.10.1007/s11306-011-0366-4
5 sg:pub.10.1007/s11306-016-1030-9
6 sg:pub.10.1038/455697a
7 sg:pub.10.1038/ng.2982
8 sg:pub.10.1038/nrg3552
9 sg:pub.10.1038/nrm3314
10 sg:pub.10.1186/1471-2288-9-57
11 sg:pub.10.1186/1752-0509-5-21
12 sg:pub.10.1186/s12859-017-1547-6
13 https://app.dimensions.ai/details/publication/pub.1074513887
14 https://app.dimensions.ai/details/publication/pub.1080483750
15 https://doi.org/10.1002/(sici)1097-0258(19990330)18:6<681::aid-sim71>3.0.co;2-r
16 https://doi.org/10.1002/9780470316696.ch1
17 https://doi.org/10.1002/elps.201500352
18 https://doi.org/10.1016/j.cmet.2017.04.012
19 https://doi.org/10.1016/j.csda.2015.04.009
20 https://doi.org/10.1021/ac200786y
21 https://doi.org/10.1021/es00082a001
22 https://doi.org/10.1021/es053368a
23 https://doi.org/10.1021/pr501130a
24 https://doi.org/10.1055/s-2005-858235
25 https://doi.org/10.1093/aje/kwf217
26 https://doi.org/10.1093/bib/bbw010
27 https://doi.org/10.1093/bioinformatics/17.6.520
28 https://doi.org/10.1093/bioinformatics/btr597
29 https://doi.org/10.1093/ije/dyw046
30 https://doi.org/10.1093/nar/gkp356
31 https://doi.org/10.1103/physreve.69.026113
32 https://doi.org/10.1175/1520-0442(2001)014<0853:aoicde>2.0.co;2
33 https://doi.org/10.1177/0962280206074463
34 https://doi.org/10.1289/ehp.1002124
35 https://doi.org/10.18637/jss.v045.i03
36 https://doi.org/10.3390/metabo4020433
37 schema:datePublished 2018-10
38 schema:datePublishedReg 2018-10-01
39 schema:description BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of sample preparation. METHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the German KORA F4 cohort (n = 1750). We then evaluated 31 imputation methods in a simulation framework and biologically validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase statistical power while preserving the strength of established metabolic quantitative trait loci. RESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across all evaluation schemes and is computationally more tractable. CONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust results in all evaluation schemes.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N9888efebda4943198be9efac9c420a53
44 Ne215ada16b824c4d8395c0ca4071b50e
45 sg:journal.1036887
46 schema:name Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
47 schema:pagination 128
48 schema:productId N01812172167d400583f53f9df5c999e2
49 N2d2d76fac59b4d63848d4183165c788d
50 N42cad6924c6143ddbb6306840ade04ea
51 N78aa6c8c98984925ad5cabed49817025
52 Nf3edade62ea449149dea39d03e1e3e21
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107125467
54 https://doi.org/10.1007/s11306-018-1420-2
55 schema:sdDatePublished 2019-04-11T11:19
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N196709119e5d4be0a555e6a8c321fc27
58 schema:url https://link.springer.com/10.1007%2Fs11306-018-1420-2
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N01812172167d400583f53f9df5c999e2 schema:name nlm_unique_id
63 schema:value 101274889
64 rdf:type schema:PropertyValue
65 N01be2d6635d444bdbfdd1d86edf71a28 rdf:first sg:person.0620106734.75
66 rdf:rest N67b9590261d74d7797f9c2913dc0a728
67 N12a4b0a421594cf7817c7925a5baa420 rdf:first sg:person.0616003437.07
68 rdf:rest N948f9ec960ab4c65bbdab1640c5ae8dc
69 N196709119e5d4be0a555e6a8c321fc27 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N2d2d76fac59b4d63848d4183165c788d schema:name readcube_id
72 schema:value c06b69beaca57915e802bb62d784c5dcc4e6f28058bd0534d0ffb0dbbf13bdb3
73 rdf:type schema:PropertyValue
74 N41831659097d4e80b7ddb8d2beaa528f rdf:first sg:person.01352171051.53
75 rdf:rest Nfe0e1a48be2a4d03a9510dc6a5d01c24
76 N42cad6924c6143ddbb6306840ade04ea schema:name doi
77 schema:value 10.1007/s11306-018-1420-2
78 rdf:type schema:PropertyValue
79 N4e4864748c8d4242a690b62a912bc4e8 rdf:first sg:person.0611124647.07
80 rdf:rest Ne68d00fa83554494b57eb5f651dc2552
81 N5dabb591c55748e68ec6e8c28451ab8c rdf:first sg:person.01151055455.97
82 rdf:rest N5e372f87b0cd43388a82892168635d80
83 N5e372f87b0cd43388a82892168635d80 rdf:first sg:person.01227277645.30
84 rdf:rest Nbc30cfe57a0840ff9bf4cf1b300cb8b4
85 N67b9590261d74d7797f9c2913dc0a728 rdf:first sg:person.015172732374.68
86 rdf:rest rdf:nil
87 N78aa6c8c98984925ad5cabed49817025 schema:name pubmed_id
88 schema:value 30830398
89 rdf:type schema:PropertyValue
90 N886fbea3078245aaa027e1a9f3ea6f22 rdf:first sg:person.01165012334.27
91 rdf:rest N4e4864748c8d4242a690b62a912bc4e8
92 N948f9ec960ab4c65bbdab1640c5ae8dc rdf:first sg:person.012522524561.91
93 rdf:rest Ndf9bbb786b5f46f097b080ab9fc46aee
94 N9888efebda4943198be9efac9c420a53 schema:issueNumber 10
95 rdf:type schema:PublicationIssue
96 Nbc30cfe57a0840ff9bf4cf1b300cb8b4 rdf:first sg:person.01113051245.30
97 rdf:rest N41831659097d4e80b7ddb8d2beaa528f
98 Nc4673c2759754eafafd5abde65321db3 rdf:first sg:person.0712635675.19
99 rdf:rest N01be2d6635d444bdbfdd1d86edf71a28
100 Ndf9bbb786b5f46f097b080ab9fc46aee rdf:first sg:person.01304403211.40
101 rdf:rest Nc4673c2759754eafafd5abde65321db3
102 Ne215ada16b824c4d8395c0ca4071b50e schema:volumeNumber 14
103 rdf:type schema:PublicationVolume
104 Ne68d00fa83554494b57eb5f651dc2552 rdf:first sg:person.0733367341.54
105 rdf:rest N5dabb591c55748e68ec6e8c28451ab8c
106 Neef823d2e6174a90bc403e25d8a95cb6 rdf:first sg:person.011673465237.05
107 rdf:rest N12a4b0a421594cf7817c7925a5baa420
108 Nf3edade62ea449149dea39d03e1e3e21 schema:name dimensions_id
109 schema:value pub.1107125467
110 rdf:type schema:PropertyValue
111 Nfb0559da488049e7bf3fd58f83d5e41e rdf:first sg:person.01321230721.07
112 rdf:rest N886fbea3078245aaa027e1a9f3ea6f22
113 Nfe0e1a48be2a4d03a9510dc6a5d01c24 rdf:first sg:person.01117072553.44
114 rdf:rest Neef823d2e6174a90bc403e25d8a95cb6
115 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
116 schema:name Mathematical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
119 schema:name Statistics
120 rdf:type schema:DefinedTerm
121 sg:grant.3560622 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-018-1420-2
122 rdf:type schema:MonetaryGrant
123 sg:grant.3797914 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-018-1420-2
124 rdf:type schema:MonetaryGrant
125 sg:journal.1036887 schema:issn 1573-3882
126 1573-3890
127 schema:name Metabolomics
128 rdf:type schema:Periodical
129 sg:person.01113051245.30 schema:affiliation https://www.grid.ac/institutes/grid.416973.e
130 schema:familyName Suhre
131 schema:givenName Karsten
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113051245.30
133 rdf:type schema:Person
134 sg:person.01117072553.44 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
135 schema:familyName Peters
136 schema:givenName Annette
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117072553.44
138 rdf:type schema:Person
139 sg:person.01151055455.97 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
140 schema:familyName Laimighofer
141 schema:givenName Michael
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151055455.97
143 rdf:type schema:Person
144 sg:person.01165012334.27 schema:affiliation https://www.grid.ac/institutes/grid.452622.5
145 schema:familyName Wahl
146 schema:givenName Simone
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165012334.27
148 rdf:type schema:Person
149 sg:person.011673465237.05 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
150 schema:familyName Gieger
151 schema:givenName Christian
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673465237.05
153 rdf:type schema:Person
154 sg:person.01227277645.30 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
155 schema:familyName Adamski
156 schema:givenName Jerzy
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30
158 rdf:type schema:Person
159 sg:person.012522524561.91 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
160 schema:familyName Stewart
161 schema:givenName Isobel D.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012522524561.91
163 rdf:type schema:Person
164 sg:person.01304403211.40 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
165 schema:familyName Theis
166 schema:givenName Fabian J.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304403211.40
168 rdf:type schema:Person
169 sg:person.01321230721.07 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
170 schema:familyName Do
171 schema:givenName Kieu Trinh
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321230721.07
173 rdf:type schema:Person
174 sg:person.01352171051.53 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
175 schema:familyName Strauch
176 schema:givenName Konstantin
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352171051.53
178 rdf:type schema:Person
179 sg:person.015172732374.68 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
180 schema:familyName Krumsiek
181 schema:givenName Jan
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172732374.68
183 rdf:type schema:Person
184 sg:person.0611124647.07 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
185 schema:familyName Raffler
186 schema:givenName Johannes
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611124647.07
188 rdf:type schema:Person
189 sg:person.0616003437.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
190 schema:familyName Langenberg
191 schema:givenName Claudia
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616003437.07
193 rdf:type schema:Person
194 sg:person.0620106734.75 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
195 schema:familyName Kastenmüller
196 schema:givenName Gabi
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620106734.75
198 rdf:type schema:Person
199 sg:person.0712635675.19 schema:affiliation https://www.grid.ac/institutes/grid.452622.5
200 schema:familyName Grallert
201 schema:givenName Harald
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712635675.19
203 rdf:type schema:Person
204 sg:person.0733367341.54 schema:affiliation https://www.grid.ac/institutes/grid.452622.5
205 schema:familyName Molnos
206 schema:givenName Sophie
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733367341.54
208 rdf:type schema:Person
209 sg:pub.10.1007/s11306-011-0366-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770929
210 https://doi.org/10.1007/s11306-011-0366-4
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s11306-016-1030-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046586749
213 https://doi.org/10.1007/s11306-016-1030-9
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/455697a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044828120
216 https://doi.org/10.1038/455697a
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/ng.2982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044995197
219 https://doi.org/10.1038/ng.2982
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nrg3552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038725356
222 https://doi.org/10.1038/nrg3552
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nrm3314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023146162
225 https://doi.org/10.1038/nrm3314
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1471-2288-9-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032846541
228 https://doi.org/10.1186/1471-2288-9-57
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/1752-0509-5-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029129105
231 https://doi.org/10.1186/1752-0509-5-21
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/s12859-017-1547-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083851263
234 https://doi.org/10.1186/s12859-017-1547-6
235 rdf:type schema:CreativeWork
236 https://app.dimensions.ai/details/publication/pub.1074513887 schema:CreativeWork
237 https://app.dimensions.ai/details/publication/pub.1080483750 schema:CreativeWork
238 https://doi.org/10.1002/(sici)1097-0258(19990330)18:6<681::aid-sim71>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1004302244
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/9780470316696.ch1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001522962
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/elps.201500352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018859162
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.cmet.2017.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085939473
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.csda.2015.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031489295
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1021/ac200786y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055001604
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1021/es00082a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055487745
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1021/es053368a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055498974
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1021/pr501130a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027353330
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1055/s-2005-858235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057441646
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/aje/kwf217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042251351
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/bib/bbw010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413138
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bioinformatics/17.6.520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024880743
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/btr597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005259061
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/ije/dyw046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015591098
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/nar/gkp356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004849732
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1175/1520-0442(2001)014<0853:aoicde>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002662967
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1177/0962280206074463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027897548
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1289/ehp.1002124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013665875
277 rdf:type schema:CreativeWork
278 https://doi.org/10.18637/jss.v045.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672674
279 rdf:type schema:CreativeWork
280 https://doi.org/10.3390/metabo4020433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291674
281 rdf:type schema:CreativeWork
282 https://www.grid.ac/institutes/grid.416973.e schema:alternateName Weill Cornell Medical College in Qatar
283 schema:name Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Doha, Qatar
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.452622.5 schema:alternateName German Center for Diabetes Research
286 schema:name German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
287 Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
288 Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.4567.0 schema:alternateName Helmholtz Zentrum München
291 schema:name German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
292 Institute of Bioinformatics and Systems Biology, Helmholtz-Zentrum München, Neuherberg, Germany
293 Institute of Computational Biology, Helmholtz-Zentrum München, Neuherberg, Germany
294 Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
295 Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
298 schema:name Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
299 Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
302 schema:name MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
305 schema:name German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
306 Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
307 Institute of Computational Biology, Helmholtz-Zentrum München, Neuherberg, Germany
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
310 schema:name Department of Mathematics, Technische Universität München, Garching, Germany
311 German Center for Cardiovascular Disease Research (DZHK e.V.), Munich, Germany
312 Institute of Computational Biology, Helmholtz-Zentrum München, Neuherberg, Germany
313 Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
314 Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising, Germany
315 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...