Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02-27

AUTHORS

Hisashi Johno, Kentaro Yoshimura, Yuki Mori, Tokuhide Kimura, Manabu Niimi, Masaki Yamada, Tetsuo Tanigawa, Jianglin Fan, Sen Takeda

ABSTRACT

IntroductionAtherosclerotic diseases are the leading cause of death worldwide. Biomarkers of atherosclerosis are required to monitor and prevent disease progression. While mass spectrometry is a promising technique to search for such biomarkers, its clinical application is hampered by the laborious processes for sample preparation and analysis.MethodsWe developed a rapid method to detect plasma metabolites by probe electrospray ionization mass spectrometry (PESI-MS), which employs an ambient ionization technique enabling atmospheric pressure rapid mass spectrometry. To create an automatic diagnosis system of atherosclerotic disorders, we applied machine learning techniques to the obtained spectra.ResultsUsing our system, we successfully discriminated between rabbits with and without dyslipidemia. The causes of dyslipidemia (genetic lipoprotein receptor deficiency or dietary cholesterol overload) were also distinguishable by this method. Furthermore, after induction of atherosclerosis in rabbits with a cholesterol-rich diet, we were able to detect dynamic changes in plasma metabolites. The major metabolites detected by PESI-MS included cholesterol sulfate and a phospholipid (PE18:0/20:4), which are promising new biomarkers of atherosclerosis.ConclusionWe developed a remarkably fast and easy method to detect potential new biomarkers of atherosclerosis in plasma using PESI-MS. More... »

PAGES

38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-018-1334-z

DOI

http://dx.doi.org/10.1007/s11306-018-1334-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101223790

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30830369


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol Esters", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, Liquid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phospholipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rabbits", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Electrospray Ionization", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johno", 
        "givenName": "Hisashi", 
        "id": "sg:person.01302562714.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302562714.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimura", 
        "givenName": "Kentaro", 
        "id": "sg:person.01362130075.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362130075.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Yuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Tokuhide", 
        "id": "sg:person.07750765513.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750765513.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niimi", 
        "givenName": "Manabu", 
        "id": "sg:person.01115327172.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115327172.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, 604-8511, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, 604-8511, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Masaki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, 604-8511, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, 604-8511, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanigawa", 
        "givenName": "Tetsuo", 
        "id": "sg:person.015443471060.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015443471060.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jianglin", 
        "id": "sg:person.01136672602.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136672602.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeda", 
        "givenName": "Sen", 
        "id": "sg:person.0677047104.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677047104.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13361-012-0447-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052228516", 
          "https://doi.org/10.1007/s13361-012-0447-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11883-011-0219-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022677736", 
          "https://doi.org/10.1007/s11883-011-0219-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030142637", 
          "https://doi.org/10.1007/s10994-010-5221-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep35037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035019099", 
          "https://doi.org/10.1038/srep35037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12976-015-0006-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001586177", 
          "https://doi.org/10.1186/s12976-015-0006-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13361-012-0462-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004223762", 
          "https://doi.org/10.1007/s13361-012-0462-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-27", 
    "datePublishedReg": "2018-02-27", 
    "description": "IntroductionAtherosclerotic diseases are the leading cause of death worldwide. Biomarkers of atherosclerosis are required to monitor and prevent disease progression. While mass spectrometry is a promising technique to search for such biomarkers, its clinical application is hampered by the laborious processes for sample preparation and analysis.MethodsWe developed a rapid method to detect plasma metabolites by probe electrospray ionization mass spectrometry (PESI-MS), which employs an ambient ionization technique enabling atmospheric pressure rapid mass spectrometry. To create an automatic diagnosis system of atherosclerotic disorders, we applied machine learning techniques to the obtained spectra.ResultsUsing our system, we successfully discriminated between rabbits with and without dyslipidemia. The causes of dyslipidemia (genetic lipoprotein receptor deficiency or dietary cholesterol overload) were also distinguishable by this method. Furthermore, after induction of atherosclerosis in rabbits with a cholesterol-rich diet, we were able to detect dynamic changes in plasma metabolites. The major metabolites detected by PESI-MS included cholesterol sulfate and a phospholipid (PE18:0/20:4), which are promising new biomarkers of atherosclerosis.ConclusionWe developed a remarkably fast and easy method to detect potential new biomarkers of atherosclerosis in plasma using PESI-MS.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11306-018-1334-z", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6834067", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6834324", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5911265", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5860249", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "potential new biomarkers", 
      "new biomarkers", 
      "plasma metabolites", 
      "biomarkers of atherosclerosis", 
      "cholesterol-rich diet", 
      "causes of dyslipidemia", 
      "induction of atherosclerosis", 
      "cause of death", 
      "atherosclerotic disorders", 
      "disease progression", 
      "such biomarkers", 
      "atherosclerosis", 
      "biomarkers", 
      "major metabolite", 
      "dyslipidemia", 
      "clinical application", 
      "cholesterol sulfate", 
      "probe electrospray ionization mass spectrometry", 
      "rabbits", 
      "electrospray ionization mass spectrometry", 
      "metabolites", 
      "cause", 
      "ionization mass spectrometry", 
      "rapid mass spectrometry", 
      "PESI-MS", 
      "mass spectrometry", 
      "MethodsWe", 
      "disease", 
      "progression", 
      "ConclusionWe", 
      "disorders", 
      "death", 
      "diet", 
      "dynamic changes", 
      "ambient ionization techniques", 
      "induction", 
      "ionization techniques", 
      "easy method", 
      "phospholipids", 
      "sample preparation", 
      "spectrometry", 
      "plasma", 
      "automatic diagnosis system", 
      "rapid method", 
      "changes", 
      "technique", 
      "method", 
      "sulfate", 
      "detection", 
      "preparation", 
      "analysis", 
      "promising technique", 
      "diagnosis system", 
      "system", 
      "spectra", 
      "laborious process", 
      "applications", 
      "process", 
      "machine"
    ], 
    "name": "Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry", 
    "pagination": "38", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101223790"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-018-1334-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30830369"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-018-1334-z", 
      "https://app.dimensions.ai/details/publication/pub.1101223790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_765.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11306-018-1334-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1334-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1334-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1334-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-018-1334-z'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      102 URIs      86 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-018-1334-z schema:about N0316449ba2904d96921c6301751991fe
2 N0f18735970f444eaa687bd5d241f6bee
3 N1eb0e8feefdd481e96e6f4348b440bba
4 N3c5aeaf816b04b15b044e944daed17f8
5 N3f35d0b07cf04ffe87550c5e22592238
6 N44e076b6dcc44616a4c7b8ef0e1ae999
7 N81fd4cb9fa2c4989897927048a86124d
8 N9831a8261d344662b840782c62e402fd
9 N9e19d0e477434563a6043bb3a2ce8868
10 Na4035005111f4a6a9b8c1e1f8fdf83e1
11 anzsrc-for:03
12 anzsrc-for:0301
13 anzsrc-for:11
14 anzsrc-for:1102
15 schema:author N102a6b5ae18d466ebc4cf35c7073928a
16 schema:citation sg:pub.10.1007/s10994-010-5221-8
17 sg:pub.10.1007/s11883-011-0219-7
18 sg:pub.10.1007/s13361-012-0447-2
19 sg:pub.10.1007/s13361-012-0462-3
20 sg:pub.10.1038/srep35037
21 sg:pub.10.1186/s12976-015-0006-1
22 schema:datePublished 2018-02-27
23 schema:datePublishedReg 2018-02-27
24 schema:description IntroductionAtherosclerotic diseases are the leading cause of death worldwide. Biomarkers of atherosclerosis are required to monitor and prevent disease progression. While mass spectrometry is a promising technique to search for such biomarkers, its clinical application is hampered by the laborious processes for sample preparation and analysis.MethodsWe developed a rapid method to detect plasma metabolites by probe electrospray ionization mass spectrometry (PESI-MS), which employs an ambient ionization technique enabling atmospheric pressure rapid mass spectrometry. To create an automatic diagnosis system of atherosclerotic disorders, we applied machine learning techniques to the obtained spectra.ResultsUsing our system, we successfully discriminated between rabbits with and without dyslipidemia. The causes of dyslipidemia (genetic lipoprotein receptor deficiency or dietary cholesterol overload) were also distinguishable by this method. Furthermore, after induction of atherosclerosis in rabbits with a cholesterol-rich diet, we were able to detect dynamic changes in plasma metabolites. The major metabolites detected by PESI-MS included cholesterol sulfate and a phospholipid (PE18:0/20:4), which are promising new biomarkers of atherosclerosis.ConclusionWe developed a remarkably fast and easy method to detect potential new biomarkers of atherosclerosis in plasma using PESI-MS.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N4db7a5e0fc2f4d598d0f4a6305c1b60b
28 Na8672d3ff0f04f7e99f597f925985e4c
29 sg:journal.1036887
30 schema:keywords ConclusionWe
31 MethodsWe
32 PESI-MS
33 ambient ionization techniques
34 analysis
35 applications
36 atherosclerosis
37 atherosclerotic disorders
38 automatic diagnosis system
39 biomarkers
40 biomarkers of atherosclerosis
41 cause
42 cause of death
43 causes of dyslipidemia
44 changes
45 cholesterol sulfate
46 cholesterol-rich diet
47 clinical application
48 death
49 detection
50 diagnosis system
51 diet
52 disease
53 disease progression
54 disorders
55 dynamic changes
56 dyslipidemia
57 easy method
58 electrospray ionization mass spectrometry
59 induction
60 induction of atherosclerosis
61 ionization mass spectrometry
62 ionization techniques
63 laborious process
64 machine
65 major metabolite
66 mass spectrometry
67 metabolites
68 method
69 new biomarkers
70 phospholipids
71 plasma
72 plasma metabolites
73 potential new biomarkers
74 preparation
75 probe electrospray ionization mass spectrometry
76 process
77 progression
78 promising technique
79 rabbits
80 rapid mass spectrometry
81 rapid method
82 sample preparation
83 spectra
84 spectrometry
85 such biomarkers
86 sulfate
87 system
88 technique
89 schema:name Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry
90 schema:pagination 38
91 schema:productId N59395b6088714d2e953f7ff535f3e323
92 N70c1d6757a8d48d79fec6aed61ab6b9b
93 Ne0677b61484644c782d4b11a93fbc627
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101223790
95 https://doi.org/10.1007/s11306-018-1334-z
96 schema:sdDatePublished 2022-10-01T06:44
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nc61bf23fa02345e1af4b4fc4ac04cc74
99 schema:url https://doi.org/10.1007/s11306-018-1334-z
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N0316449ba2904d96921c6301751991fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Metabolomics
105 rdf:type schema:DefinedTerm
106 N0f18735970f444eaa687bd5d241f6bee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Chromatography, Liquid
108 rdf:type schema:DefinedTerm
109 N102a6b5ae18d466ebc4cf35c7073928a rdf:first sg:person.01302562714.97
110 rdf:rest Nd254fb9e64594fd696c6e216d491a1dd
111 N1eb0e8feefdd481e96e6f4348b440bba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Machine Learning
113 rdf:type schema:DefinedTerm
114 N3c5aeaf816b04b15b044e944daed17f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Phospholipids
116 rdf:type schema:DefinedTerm
117 N3f35d0b07cf04ffe87550c5e22592238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Rabbits
119 rdf:type schema:DefinedTerm
120 N44e076b6dcc44616a4c7b8ef0e1ae999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Biomarkers
122 rdf:type schema:DefinedTerm
123 N47647e41177948ce96ee8d5663bd6922 rdf:first sg:person.01115327172.22
124 rdf:rest Nce80c680ab9a4f3abacbab48403095ab
125 N4db7a5e0fc2f4d598d0f4a6305c1b60b schema:volumeNumber 14
126 rdf:type schema:PublicationVolume
127 N52f3304596cc4c49916c1db4cf41872a rdf:first N9a7a89468d024538bf43c4cfef0e8249
128 rdf:rest Nc00c702cd1914eab9a1320e108646294
129 N59395b6088714d2e953f7ff535f3e323 schema:name doi
130 schema:value 10.1007/s11306-018-1334-z
131 rdf:type schema:PropertyValue
132 N70c1d6757a8d48d79fec6aed61ab6b9b schema:name dimensions_id
133 schema:value pub.1101223790
134 rdf:type schema:PropertyValue
135 N81fd4cb9fa2c4989897927048a86124d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Animals
137 rdf:type schema:DefinedTerm
138 N8d52b0b15f404acc85a5c6da6c557f9f rdf:first sg:person.015443471060.67
139 rdf:rest Neaadf4e9e5354b0bb2f80ca92e6a8c94
140 N95f1bc424ecb4a06a8244302879ab3cb schema:affiliation grid-institutes:None
141 schema:familyName Yamada
142 schema:givenName Masaki
143 rdf:type schema:Person
144 N9831a8261d344662b840782c62e402fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Atherosclerosis
146 rdf:type schema:DefinedTerm
147 N9a7a89468d024538bf43c4cfef0e8249 schema:affiliation grid-institutes:grid.267500.6
148 schema:familyName Mori
149 schema:givenName Yuki
150 rdf:type schema:Person
151 N9d1e14d71b0d4d60b7bf149fbabc484f rdf:first sg:person.0677047104.45
152 rdf:rest rdf:nil
153 N9e19d0e477434563a6043bb3a2ce8868 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Spectrometry, Mass, Electrospray Ionization
155 rdf:type schema:DefinedTerm
156 Na4035005111f4a6a9b8c1e1f8fdf83e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Cholesterol Esters
158 rdf:type schema:DefinedTerm
159 Na8672d3ff0f04f7e99f597f925985e4c schema:issueNumber 4
160 rdf:type schema:PublicationIssue
161 Nc00c702cd1914eab9a1320e108646294 rdf:first sg:person.07750765513.07
162 rdf:rest N47647e41177948ce96ee8d5663bd6922
163 Nc61bf23fa02345e1af4b4fc4ac04cc74 schema:name Springer Nature - SN SciGraph project
164 rdf:type schema:Organization
165 Nce80c680ab9a4f3abacbab48403095ab rdf:first N95f1bc424ecb4a06a8244302879ab3cb
166 rdf:rest N8d52b0b15f404acc85a5c6da6c557f9f
167 Nd254fb9e64594fd696c6e216d491a1dd rdf:first sg:person.01362130075.19
168 rdf:rest N52f3304596cc4c49916c1db4cf41872a
169 Ne0677b61484644c782d4b11a93fbc627 schema:name pubmed_id
170 schema:value 30830369
171 rdf:type schema:PropertyValue
172 Neaadf4e9e5354b0bb2f80ca92e6a8c94 rdf:first sg:person.01136672602.49
173 rdf:rest N9d1e14d71b0d4d60b7bf149fbabc484f
174 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
175 schema:name Chemical Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
178 schema:name Analytical Chemistry
179 rdf:type schema:DefinedTerm
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
184 schema:name Cardiorespiratory Medicine and Haematology
185 rdf:type schema:DefinedTerm
186 sg:grant.5860249 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-018-1334-z
187 rdf:type schema:MonetaryGrant
188 sg:grant.5911265 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-018-1334-z
189 rdf:type schema:MonetaryGrant
190 sg:grant.6834067 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-018-1334-z
191 rdf:type schema:MonetaryGrant
192 sg:grant.6834324 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-018-1334-z
193 rdf:type schema:MonetaryGrant
194 sg:journal.1036887 schema:issn 1573-3882
195 1573-3890
196 schema:name Metabolomics
197 schema:publisher Springer Nature
198 rdf:type schema:Periodical
199 sg:person.01115327172.22 schema:affiliation grid-institutes:grid.267500.6
200 schema:familyName Niimi
201 schema:givenName Manabu
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115327172.22
203 rdf:type schema:Person
204 sg:person.01136672602.49 schema:affiliation grid-institutes:grid.267500.6
205 schema:familyName Fan
206 schema:givenName Jianglin
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136672602.49
208 rdf:type schema:Person
209 sg:person.01302562714.97 schema:affiliation grid-institutes:grid.267500.6
210 schema:familyName Johno
211 schema:givenName Hisashi
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302562714.97
213 rdf:type schema:Person
214 sg:person.01362130075.19 schema:affiliation grid-institutes:grid.267500.6
215 schema:familyName Yoshimura
216 schema:givenName Kentaro
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362130075.19
218 rdf:type schema:Person
219 sg:person.015443471060.67 schema:affiliation grid-institutes:None
220 schema:familyName Tanigawa
221 schema:givenName Tetsuo
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015443471060.67
223 rdf:type schema:Person
224 sg:person.0677047104.45 schema:affiliation grid-institutes:grid.267500.6
225 schema:familyName Takeda
226 schema:givenName Sen
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677047104.45
228 rdf:type schema:Person
229 sg:person.07750765513.07 schema:affiliation grid-institutes:grid.267500.6
230 schema:familyName Kimura
231 schema:givenName Tokuhide
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750765513.07
233 rdf:type schema:Person
234 sg:pub.10.1007/s10994-010-5221-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030142637
235 https://doi.org/10.1007/s10994-010-5221-8
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s11883-011-0219-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677736
238 https://doi.org/10.1007/s11883-011-0219-7
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s13361-012-0447-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052228516
241 https://doi.org/10.1007/s13361-012-0447-2
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s13361-012-0462-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004223762
244 https://doi.org/10.1007/s13361-012-0462-3
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/srep35037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035019099
247 https://doi.org/10.1038/srep35037
248 rdf:type schema:CreativeWork
249 sg:pub.10.1186/s12976-015-0006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001586177
250 https://doi.org/10.1186/s12976-015-0006-1
251 rdf:type schema:CreativeWork
252 grid-institutes:None schema:alternateName Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, 604-8511, Kyoto, Japan
253 schema:name Analytical and Measuring Instruments Division, Global Application Development Center, Shimadzu Corporation, 604-8511, Kyoto, Japan
254 rdf:type schema:Organization
255 grid-institutes:grid.267500.6 schema:alternateName Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan
256 Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan
257 schema:name Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan
258 Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 409-3898, Chuo, Yamanashi, Japan
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...