High-throughput extraction and quantification method for targeted metabolomics in murine tissues View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01

AUTHORS

Sven Zukunft, Cornelia Prehn, Cornelia Röhring, Gabriele Möller, Martin Hrabě de Angelis, Jerzy Adamski, Janina Tokarz

ABSTRACT

Introduction: Global metabolomics analyses using body fluids provide valuable results for the understanding and prediction of diseases. However, the mechanism of a disease is often tissue-based and it is advantageous to analyze metabolomic changes directly in the tissue. Metabolomics from tissue samples faces many challenges like tissue collection, homogenization, and metabolite extraction. Objectives: We aimed to establish a metabolite extraction protocol optimized for tissue metabolite quantification by the targeted metabolomics AbsoluteIDQ™ p180 Kit (Biocrates). The extraction method should be non-selective, applicable to different kinds and amounts of tissues, monophasic, reproducible, and amenable to high throughput. Methods: We quantified metabolites in samples of eleven murine tissues after extraction with three solvents (methanol, phosphate buffer, ethanol/phosphate buffer mixture) in two tissue to solvent ratios and analyzed the extraction yield, ionization efficiency, and reproducibility. Results: We found methanol and ethanol/phosphate buffer to be superior to phosphate buffer in regard to extraction yield, reproducibility, and ionization efficiency for all metabolites measured. Phosphate buffer, however, outperformed both organic solvents for amino acids and biogenic amines but yielded unsatisfactory results for lipids. The observed matrix effects of tissue extracts were smaller or in a similar range compared to those of human plasma. Conclusion: We provide for each murine tissue type an optimized high-throughput metabolite extraction protocol, which yields the best results for extraction, reproducibility, and quantification of metabolites in the p180 kit. Although the performance of the extraction protocol was monitored by the p180 kit, the protocol can be applicable to other targeted metabolomics assays. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-017-1312-x

DOI

http://dx.doi.org/10.1007/s11306-017-1312-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100115564

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29354024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "German Center for Diabetes Research", 
          "id": "https://www.grid.ac/institutes/grid.452622.5", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany", 
            "German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zukunft", 
        "givenName": "Sven", 
        "id": "sg:person.0741167413.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741167413.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prehn", 
        "givenName": "Cornelia", 
        "id": "sg:person.01044067704.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044067704.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biocrates Life Sciences (Austria)", 
          "id": "https://www.grid.ac/institutes/grid.431833.e", 
          "name": [
            "Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f6hring", 
        "givenName": "Cornelia", 
        "id": "sg:person.01264313213.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264313213.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00f6ller", 
        "givenName": "Gabriele", 
        "id": "sg:person.01017713274.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017713274.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany", 
            "German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany", 
            "Lehrstuhl f\u00fcr Experimentelle Genetik, Technische Universit\u00e4t M\u00fcnchen, 85350, Freising-Weihenstephan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hrab\u011b de Angelis", 
        "givenName": "Martin", 
        "id": "sg:person.011562474414.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562474414.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany", 
            "German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany", 
            "Lehrstuhl f\u00fcr Experimentelle Genetik, Technische Universit\u00e4t M\u00fcnchen, 85350, Freising-Weihenstephan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adamski", 
        "givenName": "Jerzy", 
        "id": "sg:person.01227277645.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokarz", 
        "givenName": "Janina", 
        "id": "sg:person.0607342273.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607342273.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0531-5565(89)90035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000304889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0531-5565(89)90035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000304889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2009.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000558417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2010.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003008400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0293-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004591576", 
          "https://doi.org/10.1007/s11306-011-0293-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2004.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005792836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-471-1_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008884167", 
          "https://doi.org/10.1007/978-1-59745-471-1_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-9007(02)00780-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011602378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2007.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013053773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.20298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014913846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-016-4044-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015875886", 
          "https://doi.org/10.1007/s00125-016-4044-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-016-4044-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015875886", 
          "https://doi.org/10.1007/s00125-016-4044-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(13)70143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018807494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jchromb.2006.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022338209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023612837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2047-217x-2-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024510568", 
          "https://doi.org/10.1186/2047-217x-2-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprot.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bmc.3010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032832185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2013.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034943696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db12-0466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036208550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00589.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038529219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.6239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043006324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4155/bio.14.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043762621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pharmtox.48.113006.094715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046523475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.7155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050601900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac202661j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055002255"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "Introduction: Global metabolomics analyses using body fluids provide valuable results for the understanding and prediction of diseases. However, the mechanism of a disease is often tissue-based and it is advantageous to analyze metabolomic changes directly in the tissue. Metabolomics from tissue samples faces many challenges like tissue collection, homogenization, and metabolite extraction.\nObjectives: We aimed to establish a metabolite extraction protocol optimized for tissue metabolite quantification by the targeted metabolomics AbsoluteIDQ\u2122 p180 Kit (Biocrates). The extraction method should be non-selective, applicable to different kinds and amounts of tissues, monophasic, reproducible, and amenable to high throughput.\nMethods: We quantified metabolites in samples of eleven murine tissues after extraction with three solvents (methanol, phosphate buffer, ethanol/phosphate buffer mixture) in two tissue to solvent ratios and analyzed the extraction yield, ionization efficiency, and reproducibility.\nResults: We found methanol and ethanol/phosphate buffer to be superior to phosphate buffer in regard to extraction yield, reproducibility, and ionization efficiency for all metabolites measured. Phosphate buffer, however, outperformed both organic solvents for amino acids and biogenic amines but yielded unsatisfactory results for lipids. The observed matrix effects of tissue extracts were smaller or in a similar range compared to those of human plasma.\nConclusion: We provide for each murine tissue type an optimized high-throughput metabolite extraction protocol, which yields the best results for extraction, reproducibility, and quantification of metabolites in the p180 kit. Although the performance of the extraction protocol was monitored by the p180 kit, the protocol can be applicable to other targeted metabolomics assays.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-017-1312-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "High-throughput extraction and quantification method for targeted metabolomics in murine tissues", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d770eed519b7cd96c45d064e13b2d9aea3bea67248135ce86b69505d83ac0155"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29354024"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101274889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-017-1312-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100115564"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-017-1312-x", 
      "https://app.dimensions.ai/details/publication/pub.1100115564"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77561_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11306-017-1312-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1312-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1312-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1312-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1312-x'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-017-1312-x schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nd7989cc26a384c3f889f8f0fc51c1f6a
4 schema:citation sg:pub.10.1007/978-1-59745-471-1_25
5 sg:pub.10.1007/s00125-016-4044-y
6 sg:pub.10.1007/s11306-011-0293-4
7 sg:pub.10.1186/2047-217x-2-13
8 https://doi.org/10.1002/bmc.3010
9 https://doi.org/10.1002/mas.20298
10 https://doi.org/10.1002/nbm.740
11 https://doi.org/10.1002/rcm.1268
12 https://doi.org/10.1002/rcm.6239
13 https://doi.org/10.1016/0531-5565(89)90035-1
14 https://doi.org/10.1016/j.ab.2007.10.002
15 https://doi.org/10.1016/j.ab.2010.07.002
16 https://doi.org/10.1016/j.aca.2004.08.055
17 https://doi.org/10.1016/j.chroma.2009.11.060
18 https://doi.org/10.1016/j.chroma.2013.05.019
19 https://doi.org/10.1016/j.jchromb.2006.12.030
20 https://doi.org/10.1016/j.jprot.2013.10.002
21 https://doi.org/10.1016/s0899-9007(02)00780-3
22 https://doi.org/10.1016/s2213-8587(13)70143-8
23 https://doi.org/10.1021/ac202661j
24 https://doi.org/10.1146/annurev.pharmtox.48.113006.094715
25 https://doi.org/10.1152/ajpendo.00589.2011
26 https://doi.org/10.18632/oncotarget.7155
27 https://doi.org/10.2337/db12-0466
28 https://doi.org/10.4155/bio.14.119
29 schema:datePublished 2018-01
30 schema:datePublishedReg 2018-01-01
31 schema:description Introduction: Global metabolomics analyses using body fluids provide valuable results for the understanding and prediction of diseases. However, the mechanism of a disease is often tissue-based and it is advantageous to analyze metabolomic changes directly in the tissue. Metabolomics from tissue samples faces many challenges like tissue collection, homogenization, and metabolite extraction. Objectives: We aimed to establish a metabolite extraction protocol optimized for tissue metabolite quantification by the targeted metabolomics AbsoluteIDQ™ p180 Kit (Biocrates). The extraction method should be non-selective, applicable to different kinds and amounts of tissues, monophasic, reproducible, and amenable to high throughput. Methods: We quantified metabolites in samples of eleven murine tissues after extraction with three solvents (methanol, phosphate buffer, ethanol/phosphate buffer mixture) in two tissue to solvent ratios and analyzed the extraction yield, ionization efficiency, and reproducibility. Results: We found methanol and ethanol/phosphate buffer to be superior to phosphate buffer in regard to extraction yield, reproducibility, and ionization efficiency for all metabolites measured. Phosphate buffer, however, outperformed both organic solvents for amino acids and biogenic amines but yielded unsatisfactory results for lipids. The observed matrix effects of tissue extracts were smaller or in a similar range compared to those of human plasma. Conclusion: We provide for each murine tissue type an optimized high-throughput metabolite extraction protocol, which yields the best results for extraction, reproducibility, and quantification of metabolites in the p180 kit. Although the performance of the extraction protocol was monitored by the p180 kit, the protocol can be applicable to other targeted metabolomics assays.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N549d44cade5a42e2bb1d9a70b075b366
36 Nff1f6e245ced453991c92e404befdfe7
37 sg:journal.1036887
38 schema:name High-throughput extraction and quantification method for targeted metabolomics in murine tissues
39 schema:pagination 18
40 schema:productId N29bb8f9543f84016b978be9b7e59e79e
41 N38f6f69d9ee444a196ded1f89dee77b1
42 N8dd99fa3531e4755b81d3f924072b37f
43 Nc3cf4760bc0745a9a91ef6e8275da922
44 Nd48ad188addd4e2fab7daed609f50fb4
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100115564
46 https://doi.org/10.1007/s11306-017-1312-x
47 schema:sdDatePublished 2019-04-11T10:49
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nb86281b7f1434473976cad6bc8def85f
50 schema:url https://link.springer.com/10.1007%2Fs11306-017-1312-x
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N29bb8f9543f84016b978be9b7e59e79e schema:name readcube_id
55 schema:value d770eed519b7cd96c45d064e13b2d9aea3bea67248135ce86b69505d83ac0155
56 rdf:type schema:PropertyValue
57 N38f6f69d9ee444a196ded1f89dee77b1 schema:name nlm_unique_id
58 schema:value 101274889
59 rdf:type schema:PropertyValue
60 N544ef47abe4846dba345346b4b94a17c rdf:first sg:person.0607342273.85
61 rdf:rest rdf:nil
62 N549d44cade5a42e2bb1d9a70b075b366 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N6cee30191eca4c9b92ecc6f2f44b5afe rdf:first sg:person.011562474414.77
65 rdf:rest N8af367645c2d43199f101238b2953a37
66 N8af367645c2d43199f101238b2953a37 rdf:first sg:person.01227277645.30
67 rdf:rest N544ef47abe4846dba345346b4b94a17c
68 N8dd99fa3531e4755b81d3f924072b37f schema:name pubmed_id
69 schema:value 29354024
70 rdf:type schema:PropertyValue
71 Nb4eb5478da574a468ba615359cb38ffa rdf:first sg:person.01264313213.43
72 rdf:rest Ncd15dadd37164c40867beac13f892f05
73 Nb86281b7f1434473976cad6bc8def85f schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nc3cf4760bc0745a9a91ef6e8275da922 schema:name doi
76 schema:value 10.1007/s11306-017-1312-x
77 rdf:type schema:PropertyValue
78 Ncd15dadd37164c40867beac13f892f05 rdf:first sg:person.01017713274.38
79 rdf:rest N6cee30191eca4c9b92ecc6f2f44b5afe
80 Nce1ea721310046988cd2c707791fe123 rdf:first sg:person.01044067704.25
81 rdf:rest Nb4eb5478da574a468ba615359cb38ffa
82 Nd48ad188addd4e2fab7daed609f50fb4 schema:name dimensions_id
83 schema:value pub.1100115564
84 rdf:type schema:PropertyValue
85 Nd7989cc26a384c3f889f8f0fc51c1f6a rdf:first sg:person.0741167413.49
86 rdf:rest Nce1ea721310046988cd2c707791fe123
87 Nff1f6e245ced453991c92e404befdfe7 schema:volumeNumber 14
88 rdf:type schema:PublicationVolume
89 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
90 schema:name Biological Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
93 schema:name Biochemistry and Cell Biology
94 rdf:type schema:DefinedTerm
95 sg:journal.1036887 schema:issn 1573-3882
96 1573-3890
97 schema:name Metabolomics
98 rdf:type schema:Periodical
99 sg:person.01017713274.38 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
100 schema:familyName Möller
101 schema:givenName Gabriele
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017713274.38
103 rdf:type schema:Person
104 sg:person.01044067704.25 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
105 schema:familyName Prehn
106 schema:givenName Cornelia
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044067704.25
108 rdf:type schema:Person
109 sg:person.011562474414.77 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
110 schema:familyName Hrabě de Angelis
111 schema:givenName Martin
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562474414.77
113 rdf:type schema:Person
114 sg:person.01227277645.30 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
115 schema:familyName Adamski
116 schema:givenName Jerzy
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30
118 rdf:type schema:Person
119 sg:person.01264313213.43 schema:affiliation https://www.grid.ac/institutes/grid.431833.e
120 schema:familyName Röhring
121 schema:givenName Cornelia
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264313213.43
123 rdf:type schema:Person
124 sg:person.0607342273.85 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
125 schema:familyName Tokarz
126 schema:givenName Janina
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607342273.85
128 rdf:type schema:Person
129 sg:person.0741167413.49 schema:affiliation https://www.grid.ac/institutes/grid.452622.5
130 schema:familyName Zukunft
131 schema:givenName Sven
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741167413.49
133 rdf:type schema:Person
134 sg:pub.10.1007/978-1-59745-471-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008884167
135 https://doi.org/10.1007/978-1-59745-471-1_25
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00125-016-4044-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015875886
138 https://doi.org/10.1007/s00125-016-4044-y
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11306-011-0293-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004591576
141 https://doi.org/10.1007/s11306-011-0293-4
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/2047-217x-2-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024510568
144 https://doi.org/10.1186/2047-217x-2-13
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/bmc.3010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032832185
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/mas.20298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014913846
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/nbm.740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023612837
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/rcm.1268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734871
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/rcm.6239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043006324
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0531-5565(89)90035-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000304889
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ab.2007.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013053773
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ab.2010.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003008400
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.aca.2004.08.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005792836
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.chroma.2009.11.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000558417
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.chroma.2013.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034943696
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jchromb.2006.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022338209
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jprot.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924554
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0899-9007(02)00780-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011602378
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s2213-8587(13)70143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018807494
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ac202661j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055002255
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1146/annurev.pharmtox.48.113006.094715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523475
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1152/ajpendo.00589.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038529219
181 rdf:type schema:CreativeWork
182 https://doi.org/10.18632/oncotarget.7155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050601900
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2337/db12-0466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036208550
185 rdf:type schema:CreativeWork
186 https://doi.org/10.4155/bio.14.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043762621
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.431833.e schema:alternateName Biocrates Life Sciences (Austria)
189 schema:name Biocrates Life Sciences AG, Eduard-Bodem-Gasse 8, 6020, Innsbruck, Austria
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.452622.5 schema:alternateName German Center for Diabetes Research
192 schema:name German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
193 Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.4567.0 schema:alternateName Helmholtz Zentrum München
196 schema:name Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
199 schema:name German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
200 Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
201 Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350, Freising-Weihenstephan, Germany
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...