Postprandial metabolite profiles associated with type 2 diabetes clearly stratify individuals with impaired fasting glucose View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01

AUTHORS

Ruifang Li-Gao, Renée de Mutsert, Patrick C. N. Rensen, Jan Bert van Klinken, Cornelia Prehn, Jerzy Adamski, Astrid van Hylckama Vlieg, Martin den Heijer, Saskia le Cessie, Frits R. Rosendaal, Ko Willems van Dijk, Dennis O. Mook-Kanamori

ABSTRACT

Introduction: Fasting metabolite profiles have been shown to distinguish type 2 diabetes (T2D) patients from normal glucose tolerance (NGT) individuals. Objectives: We investigated whether, besides fasting metabolite profiles, postprandial metabolite profiles associated with T2D can stratify individuals with impaired fasting glucose (IFG) by their similarities to T2D. Methods: Three groups of individuals (age 45-65 years) without any history of IFG or T2D were selected from the Netherlands Epidemiology of Obesity study and stratified by baseline fasting glucose concentrations (NGT (n = 176), IFG (n = 186), T2D (n = 171)). 163 metabolites were measured under fasting and postprandial states (150 min after a meal challenge). Metabolite profiles specific for a high risk of T2D were identified by LASSO regression for fasting and postprandial states. The selected profiles were utilised to stratify IFG group into high (T2D probability ≥ 0.7) and low (T2D probability ≤ 0.5) risk subgroups. The stratification performances were compared with clinically relevant metabolic traits. Results: Two metabolite profiles specific for T2D (nfasting = 12 metabolites, npostprandial = 4 metabolites) were identified, with all four postprandial metabolites also being identified in the fasting state. Stratified by the postprandial profile, the high-risk subgroup of IFG individuals (n = 72) showed similar glucose concentrations to the low-risk subgroup (n = 57), yet a higher BMI (difference: 3.3 kg/m2 (95% CI 1.7-5.0)) and postprandial insulin concentrations (21.5 mU/L (95% CI 1.8-41.2)). Conclusion: Postprandial metabolites identified T2D patients as good as fasting metabolites and exhibited enhanced signals for IFG stratification, which offers a proof of concept that metabolomics research should not focus on the fasting state alone. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-017-1307-7

DOI

http://dx.doi.org/10.1007/s11306-017-1307-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099597626

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29249917


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li-Gao", 
        "givenName": "Ruifang", 
        "id": "sg:person.01326563003.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326563003.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Mutsert", 
        "givenName": "Ren\u00e9e", 
        "id": "sg:person.01002162132.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002162132.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands", 
            "Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rensen", 
        "givenName": "Patrick C. N.", 
        "id": "sg:person.014224042377.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224042377.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands", 
            "Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Klinken", 
        "givenName": "Jan Bert", 
        "id": "sg:person.01352737107.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352737107.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prehn", 
        "givenName": "Cornelia", 
        "id": "sg:person.01044067704.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044067704.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum M\u00fcnchen, Neuherberg, Germany", 
            "German Center for Diabetes Research, Neuherberg, Germany", 
            "Lehrstul f\u00fcr Experimentelle Genetik, Technische Universit\u00e4t M\u00fcnchen, Freising-Weihenstephan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adamski", 
        "givenName": "Jerzy", 
        "id": "sg:person.01227277645.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Hylckama Vlieg", 
        "givenName": "Astrid", 
        "id": "sg:person.01174565527.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174565527.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "den Heijer", 
        "givenName": "Martin", 
        "id": "sg:person.015732055741.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732055741.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands", 
            "Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "le Cessie", 
        "givenName": "Saskia", 
        "id": "sg:person.0747400610.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747400610.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosendaal", 
        "givenName": "Frits R.", 
        "id": "sg:person.01205104126.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205104126.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands", 
            "Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands", 
            "Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willems van Dijk", 
        "givenName": "Ko", 
        "id": "sg:person.0777031047.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777031047.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.10419.3d", 
          "name": [
            "Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands", 
            "Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mook-Kanamori", 
        "givenName": "Dennis O.", 
        "id": "sg:person.01345347020.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345347020.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10654-014-9910-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001801543", 
          "https://doi.org/10.1007/s10654-014-9910-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-014-9910-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001801543", 
          "https://doi.org/10.1007/s10654-014-9910-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002009671", 
          "https://doi.org/10.1038/nm.2307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0293-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004591576", 
          "https://doi.org/10.1007/s11306-011-0293-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db12-0495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010275685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-12-161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022847438", 
          "https://doi.org/10.1186/1479-5876-12-161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2009.510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023024736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0041456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023855116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc13-2195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025036178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db11-1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029175033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db12-0466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036208550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-013-9801-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037651575", 
          "https://doi.org/10.1007/s10654-013-9801-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc07-9920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041025912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.11-198093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047473398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680900300422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047998476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/193229680900300422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047998476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc08-1935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050795244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfw459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084186744"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "Introduction: Fasting metabolite profiles have been shown to distinguish type 2 diabetes (T2D) patients from normal glucose tolerance (NGT) individuals.\nObjectives: We investigated whether, besides fasting metabolite profiles, postprandial metabolite profiles associated with T2D can stratify individuals with impaired fasting glucose (IFG) by their similarities to T2D.\nMethods: Three groups of individuals (age 45-65\u00a0years) without any history of IFG or T2D were selected from the Netherlands Epidemiology of Obesity study and stratified by baseline fasting glucose concentrations (NGT (n\u2009=\u2009176), IFG (n\u2009=\u2009186), T2D (n\u2009=\u2009171)). 163 metabolites were measured under fasting and postprandial states (150\u00a0min after a meal challenge). Metabolite profiles specific for a high risk of T2D were identified by LASSO regression for fasting and postprandial states. The selected profiles were utilised to stratify IFG group into high (T2D probability\u2009\u2265\u20090.7) and low (T2D probability\u2009\u2264\u20090.5) risk subgroups. The stratification performances were compared with clinically relevant metabolic traits.\nResults: Two metabolite profiles specific for T2D (nfasting\u00a0=\u00a012 metabolites, npostprandial\u00a0=\u00a04 metabolites) were identified, with all four postprandial metabolites also being identified in the fasting state. Stratified by the postprandial profile, the high-risk subgroup of IFG individuals (n\u2009=\u200972) showed similar glucose concentrations to the low-risk subgroup (n\u2009=\u200957), yet a higher BMI (difference: 3.3\u00a0kg/m2 (95% CI 1.7-5.0)) and postprandial insulin concentrations (21.5\u00a0mU/L (95% CI 1.8-41.2)).\nConclusion: Postprandial metabolites identified T2D patients as good as fasting metabolites and exhibited enhanced signals for IFG stratification, which offers a proof of concept that metabolomics research should not focus on the fasting state alone.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-017-1307-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Postprandial metabolite profiles associated with type 2 diabetes clearly stratify individuals with impaired fasting glucose", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79640a208763c1c610dc7e1947169debcbb5e10f95a7f01c8be7973de57527e5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29249917"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101274889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-017-1307-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099597626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-017-1307-7", 
      "https://app.dimensions.ai/details/publication/pub.1099597626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77561_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11306-017-1307-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1307-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1307-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1307-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1307-7'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-017-1307-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N17b8a8dc65d24bcb941c4f7293370259
4 schema:citation sg:pub.10.1007/s10654-013-9801-3
5 sg:pub.10.1007/s10654-014-9910-7
6 sg:pub.10.1007/s11306-011-0293-4
7 sg:pub.10.1038/nm.2307
8 sg:pub.10.1186/1479-5876-12-161
9 https://doi.org/10.1038/msb.2012.43
10 https://doi.org/10.1038/oby.2009.510
11 https://doi.org/10.1093/ndt/gfw459
12 https://doi.org/10.1096/fj.11-198093
13 https://doi.org/10.1177/193229680900300422
14 https://doi.org/10.1371/journal.pone.0041456
15 https://doi.org/10.18637/jss.v033.i01
16 https://doi.org/10.2337/db11-1133
17 https://doi.org/10.2337/db12-0466
18 https://doi.org/10.2337/db12-0495
19 https://doi.org/10.2337/dc07-9920
20 https://doi.org/10.2337/dc08-1935
21 https://doi.org/10.2337/dc13-2195
22 schema:datePublished 2018-01
23 schema:datePublishedReg 2018-01-01
24 schema:description Introduction: Fasting metabolite profiles have been shown to distinguish type 2 diabetes (T2D) patients from normal glucose tolerance (NGT) individuals. Objectives: We investigated whether, besides fasting metabolite profiles, postprandial metabolite profiles associated with T2D can stratify individuals with impaired fasting glucose (IFG) by their similarities to T2D. Methods: Three groups of individuals (age 45-65 years) without any history of IFG or T2D were selected from the Netherlands Epidemiology of Obesity study and stratified by baseline fasting glucose concentrations (NGT (n = 176), IFG (n = 186), T2D (n = 171)). 163 metabolites were measured under fasting and postprandial states (150 min after a meal challenge). Metabolite profiles specific for a high risk of T2D were identified by LASSO regression for fasting and postprandial states. The selected profiles were utilised to stratify IFG group into high (T2D probability ≥ 0.7) and low (T2D probability ≤ 0.5) risk subgroups. The stratification performances were compared with clinically relevant metabolic traits. Results: Two metabolite profiles specific for T2D (nfasting = 12 metabolites, npostprandial = 4 metabolites) were identified, with all four postprandial metabolites also being identified in the fasting state. Stratified by the postprandial profile, the high-risk subgroup of IFG individuals (n = 72) showed similar glucose concentrations to the low-risk subgroup (n = 57), yet a higher BMI (difference: 3.3 kg/m2 (95% CI 1.7-5.0)) and postprandial insulin concentrations (21.5 mU/L (95% CI 1.8-41.2)). Conclusion: Postprandial metabolites identified T2D patients as good as fasting metabolites and exhibited enhanced signals for IFG stratification, which offers a proof of concept that metabolomics research should not focus on the fasting state alone.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N146cf98b0b5946a1ba5b921dac747ff9
29 Ncb88ce9509c5470985ad160f680b2ce1
30 sg:journal.1036887
31 schema:name Postprandial metabolite profiles associated with type 2 diabetes clearly stratify individuals with impaired fasting glucose
32 schema:pagination 13
33 schema:productId N3547e184aaa94cb78f2698dc3b473bbc
34 N7eb70ea34ba24150a770d7b63fee9532
35 Na4358326b728410e93f1e5e5d00fd8e9
36 Nb1d870f53e784321aa8fbf873aeff4af
37 Nd7e702925755492db7ce9487b21d14c9
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597626
39 https://doi.org/10.1007/s11306-017-1307-7
40 schema:sdDatePublished 2019-04-11T10:49
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nc7162070fe21454b965185ce259e2eea
43 schema:url https://link.springer.com/10.1007%2Fs11306-017-1307-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N146cf98b0b5946a1ba5b921dac747ff9 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N17b8a8dc65d24bcb941c4f7293370259 rdf:first sg:person.01326563003.30
50 rdf:rest N19d8fad8fbda42fcb6dd5a83be852623
51 N19d8fad8fbda42fcb6dd5a83be852623 rdf:first sg:person.01002162132.49
52 rdf:rest N6fea9c6652f04a71b7febd6319a21700
53 N1e1d39a214aa4ad6a8369ec70ccf238d rdf:first sg:person.01044067704.25
54 rdf:rest N4f069c9ede124ce184b0fa1a4695b1e9
55 N3547e184aaa94cb78f2698dc3b473bbc schema:name readcube_id
56 schema:value 79640a208763c1c610dc7e1947169debcbb5e10f95a7f01c8be7973de57527e5
57 rdf:type schema:PropertyValue
58 N4f069c9ede124ce184b0fa1a4695b1e9 rdf:first sg:person.01227277645.30
59 rdf:rest N6ad050484459425b804b4782bbc18e5c
60 N6ad050484459425b804b4782bbc18e5c rdf:first sg:person.01174565527.96
61 rdf:rest Ne6c46db399e54dd599081e38bd83f0e3
62 N6fea9c6652f04a71b7febd6319a21700 rdf:first sg:person.014224042377.45
63 rdf:rest Naf60ff67c5d64fe2bb000ea20d1ed55a
64 N7eb70ea34ba24150a770d7b63fee9532 schema:name nlm_unique_id
65 schema:value 101274889
66 rdf:type schema:PropertyValue
67 Na4358326b728410e93f1e5e5d00fd8e9 schema:name doi
68 schema:value 10.1007/s11306-017-1307-7
69 rdf:type schema:PropertyValue
70 Naf60ff67c5d64fe2bb000ea20d1ed55a rdf:first sg:person.01352737107.38
71 rdf:rest N1e1d39a214aa4ad6a8369ec70ccf238d
72 Nb01c6851573d4dc686e50ebf2d84f6bc rdf:first sg:person.01205104126.28
73 rdf:rest Nf4091ecee56242d5a7b0ac7f21271dde
74 Nb1d870f53e784321aa8fbf873aeff4af schema:name pubmed_id
75 schema:value 29249917
76 rdf:type schema:PropertyValue
77 Nc33cc816dc794196a472a2ae2fdc2be4 rdf:first sg:person.01345347020.14
78 rdf:rest rdf:nil
79 Nc7162070fe21454b965185ce259e2eea schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Ncb88ce9509c5470985ad160f680b2ce1 schema:volumeNumber 14
82 rdf:type schema:PublicationVolume
83 Ncd3b1796d55c4ec1aa69b9dd411b645d rdf:first sg:person.0747400610.53
84 rdf:rest Nb01c6851573d4dc686e50ebf2d84f6bc
85 Nd7e702925755492db7ce9487b21d14c9 schema:name dimensions_id
86 schema:value pub.1099597626
87 rdf:type schema:PropertyValue
88 Ne6c46db399e54dd599081e38bd83f0e3 rdf:first sg:person.015732055741.64
89 rdf:rest Ncd3b1796d55c4ec1aa69b9dd411b645d
90 Nf4091ecee56242d5a7b0ac7f21271dde rdf:first sg:person.0777031047.08
91 rdf:rest Nc33cc816dc794196a472a2ae2fdc2be4
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
96 schema:name Clinical Sciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1036887 schema:issn 1573-3882
99 1573-3890
100 schema:name Metabolomics
101 rdf:type schema:Periodical
102 sg:person.01002162132.49 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
103 schema:familyName de Mutsert
104 schema:givenName Renée
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002162132.49
106 rdf:type schema:Person
107 sg:person.01044067704.25 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
108 schema:familyName Prehn
109 schema:givenName Cornelia
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044067704.25
111 rdf:type schema:Person
112 sg:person.01174565527.96 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
113 schema:familyName van Hylckama Vlieg
114 schema:givenName Astrid
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174565527.96
116 rdf:type schema:Person
117 sg:person.01205104126.28 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
118 schema:familyName Rosendaal
119 schema:givenName Frits R.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205104126.28
121 rdf:type schema:Person
122 sg:person.01227277645.30 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
123 schema:familyName Adamski
124 schema:givenName Jerzy
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30
126 rdf:type schema:Person
127 sg:person.01326563003.30 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
128 schema:familyName Li-Gao
129 schema:givenName Ruifang
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326563003.30
131 rdf:type schema:Person
132 sg:person.01345347020.14 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
133 schema:familyName Mook-Kanamori
134 schema:givenName Dennis O.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345347020.14
136 rdf:type schema:Person
137 sg:person.01352737107.38 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
138 schema:familyName van Klinken
139 schema:givenName Jan Bert
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352737107.38
141 rdf:type schema:Person
142 sg:person.014224042377.45 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
143 schema:familyName Rensen
144 schema:givenName Patrick C. N.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224042377.45
146 rdf:type schema:Person
147 sg:person.015732055741.64 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
148 schema:familyName den Heijer
149 schema:givenName Martin
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732055741.64
151 rdf:type schema:Person
152 sg:person.0747400610.53 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
153 schema:familyName le Cessie
154 schema:givenName Saskia
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747400610.53
156 rdf:type schema:Person
157 sg:person.0777031047.08 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
158 schema:familyName Willems van Dijk
159 schema:givenName Ko
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777031047.08
161 rdf:type schema:Person
162 sg:pub.10.1007/s10654-013-9801-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037651575
163 https://doi.org/10.1007/s10654-013-9801-3
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s10654-014-9910-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001801543
166 https://doi.org/10.1007/s10654-014-9910-7
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11306-011-0293-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004591576
169 https://doi.org/10.1007/s11306-011-0293-4
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nm.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002009671
172 https://doi.org/10.1038/nm.2307
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1479-5876-12-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022847438
175 https://doi.org/10.1186/1479-5876-12-161
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1038/msb.2012.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445284
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1038/oby.2009.510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023024736
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/ndt/gfw459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084186744
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1096/fj.11-198093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047473398
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1177/193229680900300422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047998476
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1371/journal.pone.0041456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023855116
188 rdf:type schema:CreativeWork
189 https://doi.org/10.18637/jss.v033.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672496
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2337/db11-1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029175033
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2337/db12-0466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036208550
194 rdf:type schema:CreativeWork
195 https://doi.org/10.2337/db12-0495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010275685
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2337/dc07-9920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041025912
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2337/dc08-1935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050795244
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2337/dc13-2195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025036178
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.10419.3d schema:alternateName Leiden University Medical Center
204 schema:name Department of Clinical Epidemiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC, Leiden, The Netherlands
205 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
206 Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
207 Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
208 Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
209 Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.4567.0 schema:alternateName Helmholtz Zentrum München
212 schema:name Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
215 schema:name German Center for Diabetes Research, Neuherberg, Germany
216 Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
217 Lehrstul für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...