Investigation of urinary volatomic alterations in head and neck cancer: a non-invasive approach towards diagnosis and prognosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Ravindra Taware, Khushman Taunk, Jorge A. M. Pereira, Rahul Dhakne, Narayanan Kannan, Dharmesh Soneji, José S. Câmara, H. A. Nagarajaram, Srikanth Rapole

ABSTRACT

Head and neck cancer (HNC), like many other forms of cancer, is usually detected in advanced stages, causing poor survival outcomes. Lack of specific and sensitive screening markers for early detection of HNC has worsened the scenario for the patients as well as the clinicians. Therefore, identification of efficient, noninvasive and affordable screening marker/methodology with high specificity and sensitivity is imminent need of situation. This study aims to identify and characterize urinary volatomic alterations specific to HNC. Volatomic analysis of urine samples collected from HNC patients (n = 29) and healthy controls (n = 31) was performed using headspace solid phase microextraction coupled to gas chromatography mass spectrometry (GC–MS). Both univariate and multivariate statistical approaches were used to investigate HNC specific volatomic alterations. Statistical analysis revealed a total of 28 metabolites with highest contribution towards discrimination of HNC patients from healthy controls (VIP >1, p < 0.05, Log2 FC ≥0.58/≤−0.57). The discrimination efficiency and accuracy of urinary VOCs was ascertained by ROC curve analysis that allowed the identification of four metabolites viz. 2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 4-methyl-2-heptanone with highest sensitivity and specificity to discriminate HNC patients from healthy controls. Further, the metabolic pathway analysis identified several dysregulated pathways in HNC patients and their detailed investigations could unravel novel mechanistic insights into the disease pathophysiology. Overall, this study provides valuable fingerprint of the volatile profile of HNC patients, which in turn, might help in improving the current understanding of this form of cancer and lead to the development of non-invasive approaches for HNC diagnosis. More... »

PAGES

111

References to SciGraph publications

  • 2007-09. The metabolomics standards initiative (MSI) in METABOLOMICS
  • 2013-12. Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma in BMC SYSTEMS BIOLOGY
  • 2007-09. Standard reporting requirements for biological samples in metabolomics experiments: mammalian/in vivo experiments in METABOLOMICS
  • 2009. The Effects of Taurine, Hypotaurine, and Taurine Homologs on Erythrocyte Morphology, Membrane Fluidity and Cytoskeletal Spectrin Alterations Due to Diabetes, Alcoholism and Diabetes-Alcoholism in the Rat in TAURINE 7
  • 2014-12. Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer in CANCER & METABOLISM
  • 2011-06. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst in NATURE PROTOCOLS
  • 2011-12. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry in BRITISH JOURNAL OF CANCER
  • 2016-12. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis in GENOME MEDICINE
  • 2016-11. The metabolic fate of acetate in cancer in NATURE REVIEWS CANCER
  • 2011-09. Differential Biomarker Expression in Head and Neck Cancer Correlates with Anatomical Localization in PATHOLOGY & ONCOLOGY RESEARCH
  • 2006-12. Statistical strategies for avoiding false discoveries in metabolomics and related experiments in METABOLOMICS
  • 2016-06. ROS homeostasis and metabolism: a dangerous liason in cancer cells in CELL DEATH & DISEASE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11306-017-1251-6

    DOI

    http://dx.doi.org/10.1007/s11306-017-1251-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091309781


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Centre for Cell Science", 
              "id": "https://www.grid.ac/institutes/grid.419235.8", 
              "name": [
                "Proteomics Lab, National Centre for Cell Science, Ganeshkhind, 411007, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taware", 
            "givenName": "Ravindra", 
            "id": "sg:person.01005065132.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005065132.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Centre for Cell Science", 
              "id": "https://www.grid.ac/institutes/grid.419235.8", 
              "name": [
                "Proteomics Lab, National Centre for Cell Science, Ganeshkhind, 411007, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taunk", 
            "givenName": "Khushman", 
            "id": "sg:person.0721544234.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721544234.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Madeira", 
              "id": "https://www.grid.ac/institutes/grid.26793.39", 
              "name": [
                "CQM/UMa \u2013 Centro de Qu\u00edmica da Madeira, Universidade da Madeira, Campus Universit\u00e1rio da Penteada, 9000-390, Funchal, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pereira", 
            "givenName": "Jorge A. M.", 
            "id": "sg:person.01230012266.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230012266.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for DNA Fingerprinting and Diagnostics", 
              "id": "https://www.grid.ac/institutes/grid.145749.a", 
              "name": [
                "Laboratory of Computational Biology, Centre for DNA fingerprinting & Diagnostics (CDFD), Nampally, 500001, Hyderabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dhakne", 
            "givenName": "Rahul", 
            "id": "sg:person.01245033260.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245033260.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Armed Forces Medical College", 
              "id": "https://www.grid.ac/institutes/grid.413909.6", 
              "name": [
                "Malignant Disease Treatment Centre, Military Hospital (Cardio Thoracic Centre), Armed Forces Medical College, 411040, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kannan", 
            "givenName": "Narayanan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Armed Forces Medical College", 
              "id": "https://www.grid.ac/institutes/grid.413909.6", 
              "name": [
                "Malignant Disease Treatment Centre, Military Hospital (Cardio Thoracic Centre), Armed Forces Medical College, 411040, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soneji", 
            "givenName": "Dharmesh", 
            "id": "sg:person.016063032065.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063032065.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Madeira", 
              "id": "https://www.grid.ac/institutes/grid.26793.39", 
              "name": [
                "CQM/UMa \u2013 Centro de Qu\u00edmica da Madeira, Universidade da Madeira, Campus Universit\u00e1rio da Penteada, 9000-390, Funchal, Portugal", 
                "Faculdade de Ci\u00eancias Exatas e da Engenharia, Universidade da Madeira, Campus Universit\u00e1rio da Penteada, 9000-390, Funchal, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "C\u00e2mara", 
            "givenName": "Jos\u00e9 S.", 
            "id": "sg:person.0735063166.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735063166.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hyderabad", 
              "id": "https://www.grid.ac/institutes/grid.18048.35", 
              "name": [
                "Laboratory of Computational Biology, Centre for DNA fingerprinting & Diagnostics (CDFD), Nampally, 500001, Hyderabad, India", 
                "Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, 500 046, Hyderabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagarajaram", 
            "givenName": "H. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Centre for Cell Science", 
              "id": "https://www.grid.ac/institutes/grid.419235.8", 
              "name": [
                "Proteomics Lab, National Centre for Cell Science, Ganeshkhind, 411007, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rapole", 
            "givenName": "Srikanth", 
            "id": "sg:person.01153630126.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153630126.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3390/metabo5010140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003530014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jchromb.2013.11.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007724675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(14)70115-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009721777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-006-0037-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014281361", 
              "https://doi.org/10.1007/s11306-006-0037-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr300174a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014419423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gut.22.9.763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015665338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-3002-2-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016852351", 
              "https://doi.org/10.1186/2049-3002-2-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1471-4159.1998.71020827.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018877691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.29210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018963471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-007-0077-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019689157", 
              "https://doi.org/10.1007/s11306-007-0077-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5402/2012/137289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020332523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2011.437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021064661", 
              "https://doi.org/10.1038/bjc.2011.437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-394446-7.00027-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021108870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-cellbio-092910-154237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024587269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-7-141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026253883", 
              "https://doi.org/10.1186/1752-0509-7-141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-7-141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026253883", 
              "https://doi.org/10.1186/1752-0509-7-141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1464-410x.2006.06610.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027045995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027556089", 
              "https://doi.org/10.1038/nprot.2011.319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-007-0070-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028319004", 
              "https://doi.org/10.1007/s11306-007-0070-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0891-5849(94)90110-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029975767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0891-5849(94)90110-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029975767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-75681-3_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030321892", 
              "https://doi.org/10.1007/978-0-387-75681-3_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-75681-3_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030321892", 
              "https://doi.org/10.1007/978-0-387-75681-3_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3cs60329f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030710962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1085/jgp.8.6.519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031385086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2016.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033345780", 
              "https://doi.org/10.1038/cddis.2016.105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0108750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033841291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4111/kju.2011.52.2.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035547554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwt029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037653106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-016-0289-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038355910", 
              "https://doi.org/10.1186/s13073-016-0289-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12253-011-9376-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041314916", 
              "https://doi.org/10.1007/s12253-011-9376-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(98)07552-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042017233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042960489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trsl.2015.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044339676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trsl.2015.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044339676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047923881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1752-7155/8/3/034001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048394649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2016.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048649403", 
              "https://doi.org/10.1038/nrc.2016.87"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cncr.25245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049887594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.talanta.2011.12.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050496529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7314/apjcp.2014.15.2.537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051930586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/tx00020a008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056296566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bst20160094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056718118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bst20160094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056718118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/omi.2014.0116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059304092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.123.3191.309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062467291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.184.2.01840364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069326624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3748/wjg.v16.i46.5874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071367281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/cc.22136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072296984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpgi.1992.263.5.g625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076514761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077060920", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077078822", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077880088", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078800859", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078800859", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081860805", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10", 
        "datePublishedReg": "2017-10-01", 
        "description": "Head and neck cancer (HNC), like many other forms of cancer, is usually detected in advanced stages, causing poor survival outcomes. Lack of specific and sensitive screening markers for early detection of HNC has worsened the scenario for the patients as well as the clinicians. Therefore, identification of efficient, noninvasive and affordable screening marker/methodology with high specificity and sensitivity is imminent need of situation. This study aims to identify and characterize urinary volatomic alterations specific to HNC. Volatomic analysis of urine samples collected from HNC patients (n = 29) and healthy controls (n = 31) was performed using headspace solid phase microextraction coupled to gas chromatography mass spectrometry (GC\u2013MS). Both univariate and multivariate statistical approaches were used to investigate HNC specific volatomic alterations. Statistical analysis revealed a total of 28 metabolites with highest contribution towards discrimination of HNC patients from healthy controls (VIP >1, p < 0.05, Log2 FC \u22650.58/\u2264\u22120.57). The discrimination efficiency and accuracy of urinary VOCs was ascertained by ROC curve analysis that allowed the identification of four metabolites viz. 2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 4-methyl-2-heptanone with highest sensitivity and specificity to discriminate HNC patients from healthy controls. Further, the metabolic pathway analysis identified several dysregulated pathways in HNC patients and their detailed investigations could unravel novel mechanistic insights into the disease pathophysiology. Overall, this study provides valuable fingerprint of the volatile profile of HNC patients, which in turn, might help in improving the current understanding of this form of cancer and lead to the development of non-invasive approaches for HNC diagnosis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11306-017-1251-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036887", 
            "issn": [
              "1573-3882", 
              "1573-3890"
            ], 
            "name": "Metabolomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Investigation of urinary volatomic alterations in head and neck cancer: a non-invasive approach towards diagnosis and prognosis", 
        "pagination": "111", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aff025ea3958049f4943cd44387b49688716910331f3bbf618a5ec6c304736d7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11306-017-1251-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091309781"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11306-017-1251-6", 
          "https://app.dimensions.ai/details/publication/pub.1091309781"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113673_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11306-017-1251-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1251-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1251-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1251-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-017-1251-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    286 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11306-017-1251-6 schema:about anzsrc-for:03
    2 anzsrc-for:0301
    3 schema:author Ndc91824669194bf0a7f0e8c6a92d49ea
    4 schema:citation sg:pub.10.1007/978-0-387-75681-3_38
    5 sg:pub.10.1007/s11306-006-0037-z
    6 sg:pub.10.1007/s11306-007-0070-6
    7 sg:pub.10.1007/s11306-007-0077-z
    8 sg:pub.10.1007/s12253-011-9376-9
    9 sg:pub.10.1038/bjc.2011.437
    10 sg:pub.10.1038/cddis.2016.105
    11 sg:pub.10.1038/nprot.2011.319
    12 sg:pub.10.1038/nrc.2016.87
    13 sg:pub.10.1186/1752-0509-7-141
    14 sg:pub.10.1186/2049-3002-2-13
    15 sg:pub.10.1186/s13073-016-0289-9
    16 https://app.dimensions.ai/details/publication/pub.1077060920
    17 https://app.dimensions.ai/details/publication/pub.1077078822
    18 https://app.dimensions.ai/details/publication/pub.1077880088
    19 https://app.dimensions.ai/details/publication/pub.1078800859
    20 https://app.dimensions.ai/details/publication/pub.1081860805
    21 https://doi.org/10.1002/cncr.25245
    22 https://doi.org/10.1002/ijc.29210
    23 https://doi.org/10.1016/0891-5849(94)90110-4
    24 https://doi.org/10.1016/b978-0-12-394446-7.00027-3
    25 https://doi.org/10.1016/j.jchromb.2013.11.038
    26 https://doi.org/10.1016/j.talanta.2011.12.041
    27 https://doi.org/10.1016/j.trsl.2015.01.005
    28 https://doi.org/10.1016/s0140-6736(98)07552-7
    29 https://doi.org/10.1016/s1470-2045(14)70115-9
    30 https://doi.org/10.1021/cr300174a
    31 https://doi.org/10.1021/tx00020a008
    32 https://doi.org/10.1039/c3cs60329f
    33 https://doi.org/10.1042/bst20160094
    34 https://doi.org/10.1046/j.1471-4159.1998.71020827.x
    35 https://doi.org/10.1085/jgp.8.6.519
    36 https://doi.org/10.1088/1752-7155/8/3/034001
    37 https://doi.org/10.1089/omi.2014.0116
    38 https://doi.org/10.1093/aje/kwt029
    39 https://doi.org/10.1093/bioinformatics/btq418
    40 https://doi.org/10.1093/nar/gkv380
    41 https://doi.org/10.1111/j.1464-410x.2006.06610.x
    42 https://doi.org/10.1126/science.123.3191.309
    43 https://doi.org/10.1136/gut.22.9.763
    44 https://doi.org/10.1146/annurev-cellbio-092910-154237
    45 https://doi.org/10.1152/ajpgi.1992.263.5.g625
    46 https://doi.org/10.1371/journal.pone.0108750
    47 https://doi.org/10.2214/ajr.184.2.01840364
    48 https://doi.org/10.3390/metabo5010140
    49 https://doi.org/10.3748/wjg.v16.i46.5874
    50 https://doi.org/10.4111/kju.2011.52.2.79
    51 https://doi.org/10.4161/cc.22136
    52 https://doi.org/10.5402/2012/137289
    53 https://doi.org/10.7314/apjcp.2014.15.2.537
    54 schema:datePublished 2017-10
    55 schema:datePublishedReg 2017-10-01
    56 schema:description Head and neck cancer (HNC), like many other forms of cancer, is usually detected in advanced stages, causing poor survival outcomes. Lack of specific and sensitive screening markers for early detection of HNC has worsened the scenario for the patients as well as the clinicians. Therefore, identification of efficient, noninvasive and affordable screening marker/methodology with high specificity and sensitivity is imminent need of situation. This study aims to identify and characterize urinary volatomic alterations specific to HNC. Volatomic analysis of urine samples collected from HNC patients (n = 29) and healthy controls (n = 31) was performed using headspace solid phase microextraction coupled to gas chromatography mass spectrometry (GC–MS). Both univariate and multivariate statistical approaches were used to investigate HNC specific volatomic alterations. Statistical analysis revealed a total of 28 metabolites with highest contribution towards discrimination of HNC patients from healthy controls (VIP >1, p < 0.05, Log2 FC ≥0.58/≤−0.57). The discrimination efficiency and accuracy of urinary VOCs was ascertained by ROC curve analysis that allowed the identification of four metabolites viz. 2,6-dimethyl-7-octen-2-ol, 1-butanol, p-xylene and 4-methyl-2-heptanone with highest sensitivity and specificity to discriminate HNC patients from healthy controls. Further, the metabolic pathway analysis identified several dysregulated pathways in HNC patients and their detailed investigations could unravel novel mechanistic insights into the disease pathophysiology. Overall, this study provides valuable fingerprint of the volatile profile of HNC patients, which in turn, might help in improving the current understanding of this form of cancer and lead to the development of non-invasive approaches for HNC diagnosis.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf N17eba9fe52c94546883e5eeeba79422f
    61 N86c55a7e348e458e9b1602c2f47fbc34
    62 sg:journal.1036887
    63 schema:name Investigation of urinary volatomic alterations in head and neck cancer: a non-invasive approach towards diagnosis and prognosis
    64 schema:pagination 111
    65 schema:productId N5e860e64a74a4acfb9e0de69f1702f2a
    66 Ne3fc2365f3034f3dafc46d04cceda998
    67 Nf6018c9988c041dd99078e9f362a136c
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091309781
    69 https://doi.org/10.1007/s11306-017-1251-6
    70 schema:sdDatePublished 2019-04-11T10:37
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N23a0f6ca4ea840ff93ea0e1e93188432
    73 schema:url https://link.springer.com/10.1007%2Fs11306-017-1251-6
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N17eba9fe52c94546883e5eeeba79422f schema:issueNumber 10
    78 rdf:type schema:PublicationIssue
    79 N23a0f6ca4ea840ff93ea0e1e93188432 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N4201b9d423b743f48aa58b95f24c6480 rdf:first sg:person.0735063166.13
    82 rdf:rest N70cd37c121f046d5b24452519b01768b
    83 N5aa26ea914ab459bbbde19b166722042 schema:affiliation https://www.grid.ac/institutes/grid.18048.35
    84 schema:familyName Nagarajaram
    85 schema:givenName H. A.
    86 rdf:type schema:Person
    87 N5e860e64a74a4acfb9e0de69f1702f2a schema:name dimensions_id
    88 schema:value pub.1091309781
    89 rdf:type schema:PropertyValue
    90 N70cd37c121f046d5b24452519b01768b rdf:first N5aa26ea914ab459bbbde19b166722042
    91 rdf:rest N93693f5c00654aaea5dd6a04991228df
    92 N747e74ddf18c48578aefc6200eed27a7 rdf:first sg:person.0721544234.86
    93 rdf:rest Nebfd9352a83440958ec060da62ca049d
    94 N86c55a7e348e458e9b1602c2f47fbc34 schema:volumeNumber 13
    95 rdf:type schema:PublicationVolume
    96 N93693f5c00654aaea5dd6a04991228df rdf:first sg:person.01153630126.43
    97 rdf:rest rdf:nil
    98 Na03545772d384361bf7fac488016efdb schema:affiliation https://www.grid.ac/institutes/grid.413909.6
    99 schema:familyName Kannan
    100 schema:givenName Narayanan
    101 rdf:type schema:Person
    102 Nc8922627c0bd416d8974054c44967555 rdf:first sg:person.016063032065.40
    103 rdf:rest N4201b9d423b743f48aa58b95f24c6480
    104 Nc8ef20911a604cc09b9b8f33f7cb56df rdf:first sg:person.01245033260.02
    105 rdf:rest Nd2377dd99adb4da090572684ac5b5750
    106 Nd2377dd99adb4da090572684ac5b5750 rdf:first Na03545772d384361bf7fac488016efdb
    107 rdf:rest Nc8922627c0bd416d8974054c44967555
    108 Ndc91824669194bf0a7f0e8c6a92d49ea rdf:first sg:person.01005065132.73
    109 rdf:rest N747e74ddf18c48578aefc6200eed27a7
    110 Ne3fc2365f3034f3dafc46d04cceda998 schema:name readcube_id
    111 schema:value aff025ea3958049f4943cd44387b49688716910331f3bbf618a5ec6c304736d7
    112 rdf:type schema:PropertyValue
    113 Nebfd9352a83440958ec060da62ca049d rdf:first sg:person.01230012266.04
    114 rdf:rest Nc8ef20911a604cc09b9b8f33f7cb56df
    115 Nf6018c9988c041dd99078e9f362a136c schema:name doi
    116 schema:value 10.1007/s11306-017-1251-6
    117 rdf:type schema:PropertyValue
    118 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Chemical Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Analytical Chemistry
    123 rdf:type schema:DefinedTerm
    124 sg:journal.1036887 schema:issn 1573-3882
    125 1573-3890
    126 schema:name Metabolomics
    127 rdf:type schema:Periodical
    128 sg:person.01005065132.73 schema:affiliation https://www.grid.ac/institutes/grid.419235.8
    129 schema:familyName Taware
    130 schema:givenName Ravindra
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005065132.73
    132 rdf:type schema:Person
    133 sg:person.01153630126.43 schema:affiliation https://www.grid.ac/institutes/grid.419235.8
    134 schema:familyName Rapole
    135 schema:givenName Srikanth
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153630126.43
    137 rdf:type schema:Person
    138 sg:person.01230012266.04 schema:affiliation https://www.grid.ac/institutes/grid.26793.39
    139 schema:familyName Pereira
    140 schema:givenName Jorge A. M.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230012266.04
    142 rdf:type schema:Person
    143 sg:person.01245033260.02 schema:affiliation https://www.grid.ac/institutes/grid.145749.a
    144 schema:familyName Dhakne
    145 schema:givenName Rahul
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245033260.02
    147 rdf:type schema:Person
    148 sg:person.016063032065.40 schema:affiliation https://www.grid.ac/institutes/grid.413909.6
    149 schema:familyName Soneji
    150 schema:givenName Dharmesh
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063032065.40
    152 rdf:type schema:Person
    153 sg:person.0721544234.86 schema:affiliation https://www.grid.ac/institutes/grid.419235.8
    154 schema:familyName Taunk
    155 schema:givenName Khushman
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721544234.86
    157 rdf:type schema:Person
    158 sg:person.0735063166.13 schema:affiliation https://www.grid.ac/institutes/grid.26793.39
    159 schema:familyName Câmara
    160 schema:givenName José S.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735063166.13
    162 rdf:type schema:Person
    163 sg:pub.10.1007/978-0-387-75681-3_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030321892
    164 https://doi.org/10.1007/978-0-387-75681-3_38
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s11306-006-0037-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014281361
    167 https://doi.org/10.1007/s11306-006-0037-z
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s11306-007-0070-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028319004
    170 https://doi.org/10.1007/s11306-007-0070-6
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s11306-007-0077-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019689157
    173 https://doi.org/10.1007/s11306-007-0077-z
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s12253-011-9376-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041314916
    176 https://doi.org/10.1007/s12253-011-9376-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/bjc.2011.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021064661
    179 https://doi.org/10.1038/bjc.2011.437
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/cddis.2016.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033345780
    182 https://doi.org/10.1038/cddis.2016.105
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nprot.2011.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027556089
    185 https://doi.org/10.1038/nprot.2011.319
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nrc.2016.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048649403
    188 https://doi.org/10.1038/nrc.2016.87
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1752-0509-7-141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026253883
    191 https://doi.org/10.1186/1752-0509-7-141
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1186/2049-3002-2-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016852351
    194 https://doi.org/10.1186/2049-3002-2-13
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/s13073-016-0289-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038355910
    197 https://doi.org/10.1186/s13073-016-0289-9
    198 rdf:type schema:CreativeWork
    199 https://app.dimensions.ai/details/publication/pub.1077060920 schema:CreativeWork
    200 https://app.dimensions.ai/details/publication/pub.1077078822 schema:CreativeWork
    201 https://app.dimensions.ai/details/publication/pub.1077880088 schema:CreativeWork
    202 https://app.dimensions.ai/details/publication/pub.1078800859 schema:CreativeWork
    203 https://app.dimensions.ai/details/publication/pub.1081860805 schema:CreativeWork
    204 https://doi.org/10.1002/cncr.25245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049887594
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1002/ijc.29210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018963471
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/0891-5849(94)90110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029975767
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/b978-0-12-394446-7.00027-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021108870
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.jchromb.2013.11.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007724675
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.talanta.2011.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050496529
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.trsl.2015.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044339676
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0140-6736(98)07552-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042017233
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/s1470-2045(14)70115-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009721777
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1021/cr300174a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014419423
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1021/tx00020a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056296566
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1039/c3cs60329f schema:sameAs https://app.dimensions.ai/details/publication/pub.1030710962
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1042/bst20160094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056718118
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1046/j.1471-4159.1998.71020827.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018877691
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1085/jgp.8.6.519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031385086
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1088/1752-7155/8/3/034001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048394649
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1089/omi.2014.0116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059304092
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/aje/kwt029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037653106
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/bioinformatics/btq418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042960489
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/nar/gkv380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047923881
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1111/j.1464-410x.2006.06610.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027045995
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1126/science.123.3191.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467291
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1136/gut.22.9.763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015665338
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1146/annurev-cellbio-092910-154237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024587269
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1152/ajpgi.1992.263.5.g625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076514761
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1371/journal.pone.0108750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033841291
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.2214/ajr.184.2.01840364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326624
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.3390/metabo5010140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003530014
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.3748/wjg.v16.i46.5874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071367281
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.4111/kju.2011.52.2.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035547554
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.4161/cc.22136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072296984
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.5402/2012/137289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020332523
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.7314/apjcp.2014.15.2.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051930586
    269 rdf:type schema:CreativeWork
    270 https://www.grid.ac/institutes/grid.145749.a schema:alternateName Centre for DNA Fingerprinting and Diagnostics
    271 schema:name Laboratory of Computational Biology, Centre for DNA fingerprinting & Diagnostics (CDFD), Nampally, 500001, Hyderabad, India
    272 rdf:type schema:Organization
    273 https://www.grid.ac/institutes/grid.18048.35 schema:alternateName University of Hyderabad
    274 schema:name Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, 500 046, Hyderabad, India
    275 Laboratory of Computational Biology, Centre for DNA fingerprinting & Diagnostics (CDFD), Nampally, 500001, Hyderabad, India
    276 rdf:type schema:Organization
    277 https://www.grid.ac/institutes/grid.26793.39 schema:alternateName University of Madeira
    278 schema:name CQM/UMa – Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
    279 Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9000-390, Funchal, Portugal
    280 rdf:type schema:Organization
    281 https://www.grid.ac/institutes/grid.413909.6 schema:alternateName Armed Forces Medical College
    282 schema:name Malignant Disease Treatment Centre, Military Hospital (Cardio Thoracic Centre), Armed Forces Medical College, 411040, Pune, India
    283 rdf:type schema:Organization
    284 https://www.grid.ac/institutes/grid.419235.8 schema:alternateName National Centre for Cell Science
    285 schema:name Proteomics Lab, National Centre for Cell Science, Ganeshkhind, 411007, Pune, India
    286 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...