Ultra high performance liquid chromatography–high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01-05

AUTHORS

Amanda J. Lloyd, Manfred Beckmann, Thomas Wilson, Kathleen Tailliart, David Allaway, John Draper

ABSTRACT

INTRODUCTION AND OBJECTIVES: The purpose of this study was to use high accurate mass metabolomic profiling to investigate differences within a phenotypically diverse canine population, with breed-related morphological, physiological and behavioural differences. Previously, using a broad metabolite fingerprinting approach, lipids appear to dominate inter- and intra- breed discrimination. The purpose here was to use Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) to identify in more detail, inter-breed signatures in plasma lipidomic profiles of home-based, client-owned dogs maintained on different diets and fed according to their owners' feeding regimens. METHODS: Nine dog breeds were recruited in this study (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese: 7-12 dogs per breed). Metabolite profiling on a MTBE lipid extract of fasted plasma was performed using UHPLC-HRMS. RESULTS: Multivariate modelling and classification indicated that the main source of lipidome variance was between the three breeds Chihuahua, Dachshund and Greyhound and the other six breeds, however some intra-breed variance was evident in Labrador Retrievers. Metabolites associated with dietary intake impacted on breed-associated variance and following filtering of these signals out of the data-set unique inter-breed lipidome differences for Chihuahua, Golden Retriever and Greyhound were identified. CONCLUSION: By using a phenotypically diverse home-based canine population, we were able to show that high accurate mass lipidomics can enable identification of metabolites in the first pass plasma profile, capturing distinct metabolomic variability associated with genetic differences, despite environmental and dietary variability. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-016-1152-0

DOI

http://dx.doi.org/10.1007/s11306-016-1152-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040386366

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28111530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.493538.0", 
          "name": [
            "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lloyd", 
        "givenName": "Amanda J.", 
        "id": "sg:person.0745467100.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745467100.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.493538.0", 
          "name": [
            "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beckmann", 
        "givenName": "Manfred", 
        "id": "sg:person.01174676510.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174676510.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.493538.0", 
          "name": [
            "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilson", 
        "givenName": "Thomas", 
        "id": "sg:person.01051743562.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051743562.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.493538.0", 
          "name": [
            "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tailliart", 
        "givenName": "Kathleen", 
        "id": "sg:person.0617202603.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617202603.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK", 
          "id": "http://www.grid.ac/institutes/grid.435741.0", 
          "name": [
            "WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allaway", 
        "givenName": "David", 
        "id": "sg:person.01271065607.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271065607.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.493538.0", 
          "name": [
            "Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Draper", 
        "givenName": "John", 
        "id": "sg:person.0661454703.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661454703.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02714963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020787715", 
          "https://doi.org/10.1007/bf02714963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010131855", 
          "https://doi.org/10.1186/1471-2105-10-227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-016-0997-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035747405", 
          "https://doi.org/10.1007/s11306-016-0997-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-007-0092-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012239022", 
          "https://doi.org/10.1007/s11306-007-0092-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1746-6148-9-47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023708499", 
          "https://doi.org/10.1186/1746-6148-9-47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025542786", 
          "https://doi.org/10.1038/nprot.2007.511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016814601", 
          "https://doi.org/10.1038/nprot.2007.500"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-05", 
    "datePublishedReg": "2017-01-05", 
    "description": "INTRODUCTION AND OBJECTIVES: The purpose of this study was to use high accurate mass metabolomic profiling to investigate differences within a phenotypically diverse canine population, with breed-related morphological, physiological and behavioural differences. Previously, using a broad metabolite fingerprinting approach, lipids appear to dominate inter- and intra- breed discrimination. The purpose here was to use Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) to identify in more detail, inter-breed signatures in plasma lipidomic profiles of home-based, client-owned dogs maintained on different diets and fed according to their owners' feeding regimens.\nMETHODS: Nine dog breeds were recruited in this study (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese: 7-12 dogs per breed). Metabolite profiling on a MTBE lipid extract of fasted plasma was performed using UHPLC-HRMS.\nRESULTS: Multivariate modelling and classification indicated that the main source of lipidome variance was between the three breeds Chihuahua, Dachshund and Greyhound and the other six breeds, however some intra-breed variance was evident in Labrador Retrievers. Metabolites associated with dietary intake impacted on breed-associated variance and following filtering of these signals out of the data-set unique inter-breed lipidome differences for Chihuahua, Golden Retriever and Greyhound were identified.\nCONCLUSION: By using a phenotypically diverse home-based canine population, we were able to show that high accurate mass lipidomics can enable identification of metabolites in the first pass plasma profile, capturing distinct metabolomic variability associated with genetic differences, despite environmental and dietary variability.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11306-016-1152-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2776741", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "canine population", 
      "feeding regimens", 
      "client-owned dogs", 
      "ultra-high performance liquid chromatography-high resolution mass spectrometry", 
      "plasma lipidomic profiles", 
      "plasma lipidomics", 
      "dietary intake", 
      "Golden Retrievers", 
      "lipidomic profiles", 
      "Labrador Retrievers", 
      "metabolomic profiling", 
      "identification of metabolites", 
      "performance liquid chromatography-high resolution mass spectrometry", 
      "liquid chromatography-high resolution mass spectrometry", 
      "plasma profiles", 
      "retriever", 
      "canine breeds", 
      "high performance liquid chromatography-high resolution mass spectrometry", 
      "different diets", 
      "diet", 
      "greyhounds", 
      "resolution mass spectrometry", 
      "multivariate modelling", 
      "lipid extracts", 
      "lipidomics", 
      "metabolites", 
      "regimens", 
      "dog breeds", 
      "differences", 
      "population", 
      "mass spectrometry", 
      "intake", 
      "dogs", 
      "Dachshunds", 
      "metabolomic variability", 
      "study", 
      "behavioral differences", 
      "genetic differences", 
      "lipids", 
      "profile", 
      "breeds", 
      "purpose", 
      "extract", 
      "plasma", 
      "variability", 
      "variance", 
      "profiling", 
      "fingerprinting approach", 
      "spectrometry", 
      "objective", 
      "main source", 
      "identification", 
      "discrimination", 
      "classification", 
      "Chihuahua", 
      "dietary variability", 
      "more detail", 
      "introduction", 
      "signatures", 
      "approach", 
      "signals", 
      "source", 
      "detail", 
      "modelling", 
      "filtering", 
      "environmental variability", 
      "high accurate mass metabolomic profiling", 
      "accurate mass metabolomic profiling", 
      "mass metabolomic profiling", 
      "diverse canine population", 
      "broad metabolite fingerprinting approach", 
      "metabolite fingerprinting approach", 
      "intra- breed discrimination", 
      "Chromatography-High Resolution Mass Spectrometry", 
      "inter-breed signatures", 
      "owners' feeding regimens", 
      "MTBE lipid extract", 
      "lipidome variance", 
      "breeds Chihuahua", 
      "intra-breed variance", 
      "breed-associated variance", 
      "data-set unique inter-breed lipidome differences", 
      "unique inter-breed lipidome differences", 
      "inter-breed lipidome differences", 
      "lipidome differences", 
      "diverse home-based canine population", 
      "home-based canine population", 
      "high accurate mass lipidomics", 
      "accurate mass lipidomics", 
      "mass lipidomics", 
      "first pass plasma profile", 
      "pass plasma profile", 
      "distinct metabolomic variability", 
      "Ultra high performance liquid chromatography\u2013high resolution mass spectrometry plasma lipidomics", 
      "high performance liquid chromatography\u2013high resolution mass spectrometry plasma lipidomics", 
      "performance liquid chromatography\u2013high resolution mass spectrometry plasma lipidomics", 
      "liquid chromatography\u2013high resolution mass spectrometry plasma lipidomics", 
      "chromatography\u2013high resolution mass spectrometry plasma lipidomics", 
      "resolution mass spectrometry plasma lipidomics", 
      "mass spectrometry plasma lipidomics", 
      "spectrometry plasma lipidomics", 
      "uncontrolled environmental variability", 
      "non-standardized diets"
    ], 
    "name": "Ultra high performance liquid chromatography\u2013high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets", 
    "pagination": "15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040386366"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-016-1152-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28111530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-016-1152-0", 
      "https://app.dimensions.ai/details/publication/pub.1040386366"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_720.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11306-016-1152-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1152-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1152-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1152-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1152-0'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      22 PREDICATES      136 URIs      121 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-016-1152-0 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Nef17b1a2ed2c4468997860fc9187ec0d
4 schema:citation sg:pub.10.1007/bf02714963
5 sg:pub.10.1007/s11306-007-0092-0
6 sg:pub.10.1007/s11306-016-0997-6
7 sg:pub.10.1038/nprot.2007.500
8 sg:pub.10.1038/nprot.2007.511
9 sg:pub.10.1186/1471-2105-10-227
10 sg:pub.10.1186/1746-6148-9-47
11 schema:datePublished 2017-01-05
12 schema:datePublishedReg 2017-01-05
13 schema:description INTRODUCTION AND OBJECTIVES: The purpose of this study was to use high accurate mass metabolomic profiling to investigate differences within a phenotypically diverse canine population, with breed-related morphological, physiological and behavioural differences. Previously, using a broad metabolite fingerprinting approach, lipids appear to dominate inter- and intra- breed discrimination. The purpose here was to use Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) to identify in more detail, inter-breed signatures in plasma lipidomic profiles of home-based, client-owned dogs maintained on different diets and fed according to their owners' feeding regimens. METHODS: Nine dog breeds were recruited in this study (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese: 7-12 dogs per breed). Metabolite profiling on a MTBE lipid extract of fasted plasma was performed using UHPLC-HRMS. RESULTS: Multivariate modelling and classification indicated that the main source of lipidome variance was between the three breeds Chihuahua, Dachshund and Greyhound and the other six breeds, however some intra-breed variance was evident in Labrador Retrievers. Metabolites associated with dietary intake impacted on breed-associated variance and following filtering of these signals out of the data-set unique inter-breed lipidome differences for Chihuahua, Golden Retriever and Greyhound were identified. CONCLUSION: By using a phenotypically diverse home-based canine population, we were able to show that high accurate mass lipidomics can enable identification of metabolites in the first pass plasma profile, capturing distinct metabolomic variability associated with genetic differences, despite environmental and dietary variability.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Nace59be53daf40c6b2bf553447d07efd
18 Nf5f8322f18764a33ac8f39e56c82e734
19 sg:journal.1036887
20 schema:keywords Chihuahua
21 Chromatography-High Resolution Mass Spectrometry
22 Dachshunds
23 Golden Retrievers
24 Labrador Retrievers
25 MTBE lipid extract
26 Ultra high performance liquid chromatography–high resolution mass spectrometry plasma lipidomics
27 accurate mass lipidomics
28 accurate mass metabolomic profiling
29 approach
30 behavioral differences
31 breed-associated variance
32 breeds
33 breeds Chihuahua
34 broad metabolite fingerprinting approach
35 canine breeds
36 canine population
37 chromatography–high resolution mass spectrometry plasma lipidomics
38 classification
39 client-owned dogs
40 data-set unique inter-breed lipidome differences
41 detail
42 diet
43 dietary intake
44 dietary variability
45 differences
46 different diets
47 discrimination
48 distinct metabolomic variability
49 diverse canine population
50 diverse home-based canine population
51 dog breeds
52 dogs
53 environmental variability
54 extract
55 feeding regimens
56 filtering
57 fingerprinting approach
58 first pass plasma profile
59 genetic differences
60 greyhounds
61 high accurate mass lipidomics
62 high accurate mass metabolomic profiling
63 high performance liquid chromatography-high resolution mass spectrometry
64 high performance liquid chromatography–high resolution mass spectrometry plasma lipidomics
65 home-based canine population
66 identification
67 identification of metabolites
68 intake
69 inter-breed lipidome differences
70 inter-breed signatures
71 intra- breed discrimination
72 intra-breed variance
73 introduction
74 lipid extracts
75 lipidome differences
76 lipidome variance
77 lipidomic profiles
78 lipidomics
79 lipids
80 liquid chromatography-high resolution mass spectrometry
81 liquid chromatography–high resolution mass spectrometry plasma lipidomics
82 main source
83 mass lipidomics
84 mass metabolomic profiling
85 mass spectrometry
86 mass spectrometry plasma lipidomics
87 metabolite fingerprinting approach
88 metabolites
89 metabolomic profiling
90 metabolomic variability
91 modelling
92 more detail
93 multivariate modelling
94 non-standardized diets
95 objective
96 owners' feeding regimens
97 pass plasma profile
98 performance liquid chromatography-high resolution mass spectrometry
99 performance liquid chromatography–high resolution mass spectrometry plasma lipidomics
100 plasma
101 plasma lipidomic profiles
102 plasma lipidomics
103 plasma profiles
104 population
105 profile
106 profiling
107 purpose
108 regimens
109 resolution mass spectrometry
110 resolution mass spectrometry plasma lipidomics
111 retriever
112 signals
113 signatures
114 source
115 spectrometry
116 spectrometry plasma lipidomics
117 study
118 ultra-high performance liquid chromatography-high resolution mass spectrometry
119 uncontrolled environmental variability
120 unique inter-breed lipidome differences
121 variability
122 variance
123 schema:name Ultra high performance liquid chromatography–high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets
124 schema:pagination 15
125 schema:productId N1a7a9c6d81454654b0e82224ea50427e
126 N7640f384c0cb43ebb0c8e37cc0bc57bf
127 N8f7fdd2fc69443d686dabf196febce95
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040386366
129 https://doi.org/10.1007/s11306-016-1152-0
130 schema:sdDatePublished 2021-12-01T19:37
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher N905a6359070e42ac8fa9a06dd304663f
133 schema:url https://doi.org/10.1007/s11306-016-1152-0
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N1a7a9c6d81454654b0e82224ea50427e schema:name doi
138 schema:value 10.1007/s11306-016-1152-0
139 rdf:type schema:PropertyValue
140 N61fb0886131545a8ad147d59d8e37ce4 rdf:first sg:person.01271065607.14
141 rdf:rest N94b16e2b22b14648937008e18538f55a
142 N6ba544c248664ac0965bb73ff04de8f9 rdf:first sg:person.01051743562.00
143 rdf:rest Nb1878295c98f485bbaf8aee18b0f6339
144 N7640f384c0cb43ebb0c8e37cc0bc57bf schema:name pubmed_id
145 schema:value 28111530
146 rdf:type schema:PropertyValue
147 N8f7fdd2fc69443d686dabf196febce95 schema:name dimensions_id
148 schema:value pub.1040386366
149 rdf:type schema:PropertyValue
150 N905a6359070e42ac8fa9a06dd304663f schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 N94b16e2b22b14648937008e18538f55a rdf:first sg:person.0661454703.18
153 rdf:rest rdf:nil
154 Nace59be53daf40c6b2bf553447d07efd schema:issueNumber 2
155 rdf:type schema:PublicationIssue
156 Nb1878295c98f485bbaf8aee18b0f6339 rdf:first sg:person.0617202603.50
157 rdf:rest N61fb0886131545a8ad147d59d8e37ce4
158 Nef17b1a2ed2c4468997860fc9187ec0d rdf:first sg:person.0745467100.84
159 rdf:rest Nf006a3eb14164dc1912f87e4152d04a9
160 Nf006a3eb14164dc1912f87e4152d04a9 rdf:first sg:person.01174676510.09
161 rdf:rest N6ba544c248664ac0965bb73ff04de8f9
162 Nf5f8322f18764a33ac8f39e56c82e734 schema:volumeNumber 13
163 rdf:type schema:PublicationVolume
164 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
165 schema:name Chemical Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
168 schema:name Analytical Chemistry
169 rdf:type schema:DefinedTerm
170 sg:grant.2776741 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-016-1152-0
171 rdf:type schema:MonetaryGrant
172 sg:journal.1036887 schema:issn 1573-3882
173 1573-3890
174 schema:name Metabolomics
175 schema:publisher Springer Nature
176 rdf:type schema:Periodical
177 sg:person.01051743562.00 schema:affiliation grid-institutes:grid.493538.0
178 schema:familyName Wilson
179 schema:givenName Thomas
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051743562.00
181 rdf:type schema:Person
182 sg:person.01174676510.09 schema:affiliation grid-institutes:grid.493538.0
183 schema:familyName Beckmann
184 schema:givenName Manfred
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174676510.09
186 rdf:type schema:Person
187 sg:person.01271065607.14 schema:affiliation grid-institutes:grid.435741.0
188 schema:familyName Allaway
189 schema:givenName David
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271065607.14
191 rdf:type schema:Person
192 sg:person.0617202603.50 schema:affiliation grid-institutes:grid.493538.0
193 schema:familyName Tailliart
194 schema:givenName Kathleen
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617202603.50
196 rdf:type schema:Person
197 sg:person.0661454703.18 schema:affiliation grid-institutes:grid.493538.0
198 schema:familyName Draper
199 schema:givenName John
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661454703.18
201 rdf:type schema:Person
202 sg:person.0745467100.84 schema:affiliation grid-institutes:grid.493538.0
203 schema:familyName Lloyd
204 schema:givenName Amanda J.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745467100.84
206 rdf:type schema:Person
207 sg:pub.10.1007/bf02714963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020787715
208 https://doi.org/10.1007/bf02714963
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s11306-007-0092-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012239022
211 https://doi.org/10.1007/s11306-007-0092-0
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s11306-016-0997-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035747405
214 https://doi.org/10.1007/s11306-016-0997-6
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nprot.2007.500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016814601
217 https://doi.org/10.1038/nprot.2007.500
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nprot.2007.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025542786
220 https://doi.org/10.1038/nprot.2007.511
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/1471-2105-10-227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010131855
223 https://doi.org/10.1186/1471-2105-10-227
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/1746-6148-9-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023708499
226 https://doi.org/10.1186/1746-6148-9-47
227 rdf:type schema:CreativeWork
228 grid-institutes:grid.435741.0 schema:alternateName WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK
229 schema:name WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK
230 rdf:type schema:Organization
231 grid-institutes:grid.493538.0 schema:alternateName Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
232 schema:name Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...