Ontology type: schema:ScholarlyArticle
2016-09-20
AUTHORSEkaterina A. Zelentsova, Lyudmila V. Yanshole, Olga A. Snytnikova, Vadim V. Yanshole, Yuri P. Tsentalovich, Renad Z. Sagdeev
ABSTRACTIntroductionThe analysis of post-mortem metabolomic changes in biological fluids opens the way to develop new methods for the estimation of post-mortem interval (PMI). It may also help in the analysis of disease-induced metabolomic changes in human tissues when the postoperational samples are compared to the post-mortem samples from healthy donors.ObjectivesThe goals of this study are to observe and classify the post-mortem changes occurring in the rabbit blood, aqueous and vitreous humors (AH and VH), to identify the potential PMI markers among a wide range of metabolites, and also to determine which biological fluid—blood, AH or VH—is more suitable for the PMI estimation.MethodsThe quantitative metabolomic profiling of samples of the rabbit serum, AH and VH taken at different PMIs has been performed with the combined use of high-frequency NMR and high-resolution LC–MS methods.ResultsThe quantitative levels of 61 metabolites in the rabbit serum, AH and VH at different PMIs have been measured. It has been found that the post-mortem metabolomic changes in AH and VH proceed slower than in blood, and the data scattering is lower. Among the metabolites whose concentrations increase with time, the most significant and linear growth is found for hypoxanthine, choline and glycerol.ConclusionThe obtained results suggest that the ocular fluids AH and VH may have some advantages over blood serum for the search of potential biochemical markers for the PMI estimation. Among the compounds studied in the present work, hypoxanthine, choline and glycerol give the biggest promise as the potential PMI biomarkers. More... »
PAGES172
http://scigraph.springernature.com/pub.10.1007/s11306-016-1118-2
DOIhttp://dx.doi.org/10.1007/s11306-016-1118-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1021468189
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Analytical Chemistry",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"International Tomography Center SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia",
"Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Zelentsova",
"givenName": "Ekaterina A.",
"id": "sg:person.0647503102.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647503102.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"International Tomography Center SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia",
"Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Yanshole",
"givenName": "Lyudmila V.",
"id": "sg:person.0654536260.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654536260.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"International Tomography Center SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia",
"Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Snytnikova",
"givenName": "Olga A.",
"id": "sg:person.01365612451.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365612451.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"International Tomography Center SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia",
"Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Yanshole",
"givenName": "Vadim V.",
"id": "sg:person.0657111151.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657111151.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"International Tomography Center SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia",
"Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Tsentalovich",
"givenName": "Yuri P.",
"id": "sg:person.01153326460.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153326460.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "International Tomography Center SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.419389.e",
"name": [
"International Tomography Center SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Sagdeev",
"givenName": "Renad Z.",
"id": "sg:person.0771743570.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771743570.83"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11172-007-0109-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024454507",
"https://doi.org/10.1007/s11172-007-0109-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11306-014-0691-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044480201",
"https://doi.org/10.1007/s11306-014-0691-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00216-015-8584-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018553373",
"https://doi.org/10.1007/s00216-015-8584-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1203/00006450-197504000-00002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048245815",
"https://doi.org/10.1203/00006450-197504000-00002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1203/00006450-199011000-00013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041392385",
"https://doi.org/10.1203/00006450-199011000-00013"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00414-014-1076-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019288054",
"https://doi.org/10.1007/s00414-014-1076-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-59745-327-1_14",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006404939",
"https://doi.org/10.1007/978-1-59745-327-1_14"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-09-20",
"datePublishedReg": "2016-09-20",
"description": "IntroductionThe analysis of post-mortem metabolomic changes in biological fluids opens the way to develop new methods for the estimation of post-mortem interval (PMI). It may also help in the analysis of disease-induced metabolomic changes in human tissues when the postoperational samples are compared to the post-mortem samples from healthy donors.ObjectivesThe goals of this study are to observe and classify the post-mortem changes occurring in the rabbit blood, aqueous and vitreous humors (AH and VH), to identify the potential PMI markers among a wide range of metabolites, and also to determine which biological fluid\u2014blood, AH or VH\u2014is more suitable for the PMI estimation.MethodsThe quantitative metabolomic profiling of samples of the rabbit serum, AH and VH taken at different PMIs has been performed with the combined use of high-frequency NMR and high-resolution LC\u2013MS methods.ResultsThe quantitative levels of 61 metabolites in the rabbit serum, AH and VH at different PMIs have been measured. It has been found that the post-mortem metabolomic changes in AH and VH proceed slower than in blood, and the data scattering is lower. Among the metabolites whose concentrations increase with time, the most significant and linear growth is found for hypoxanthine, choline and glycerol.ConclusionThe obtained results suggest that the ocular fluids AH and VH may have some advantages over blood serum for the search of potential biochemical markers for the PMI estimation. Among the compounds studied in the present work, hypoxanthine, choline and glycerol give the biggest promise as the potential PMI biomarkers.",
"genre": "article",
"id": "sg:pub.10.1007/s11306-016-1118-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.6754856",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6752143",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.4896745",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1036887",
"issn": [
"1573-3882",
"1573-3890"
],
"name": "Metabolomics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"LC-MS method",
"biological fluids",
"high resolution LC-MS methods",
"NMR",
"metabolomic composition",
"metabolomic changes",
"glycerol",
"blood serum",
"present work",
"vitreous humor",
"metabolites",
"rabbit serum",
"compounds",
"post-mortem changes",
"rabbit blood",
"wide range",
"different post-mortem intervals",
"quantitative level",
"post-mortem samples",
"healthy donors",
"potential biochemical markers",
"post-mortem interval",
"samples",
"metabolomic profiling",
"biochemical markers",
"ObjectivesThe goal",
"hypoxanthine",
"new method",
"donors",
"blood",
"serum",
"scattering",
"composition",
"AH",
"concentration",
"method",
"human tissues",
"choline",
"markers",
"range",
"linear growth",
"promise",
"IntroductionThe analysis",
"analysis",
"VH",
"biomarkers",
"changes",
"tissue",
"humor",
"profiling",
"advantages",
"work",
"fluid",
"intervals",
"PMI estimation",
"study",
"use",
"levels",
"time",
"results",
"growth",
"search",
"big promise",
"way",
"goal",
"data scattering",
"estimation"
],
"name": "Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors",
"pagination": "172",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1021468189"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11306-016-1118-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11306-016-1118-2",
"https://app.dimensions.ai/details/publication/pub.1021468189"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_696.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11306-016-1118-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1118-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1118-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1118-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1118-2'
This table displays all metadata directly associated to this object as RDF triples.
198 TRIPLES
22 PREDICATES
99 URIs
84 LITERALS
6 BLANK NODES