Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05

AUTHORS

Riccardo Di Guida, Jasper Engel, J. William Allwood, Ralf J. M. Weber, Martin R. Jones, Ulf Sommer, Mark R. Viant, Warwick B. Dunn

ABSTRACT

INTRODUCTION: The generic metabolomics data processing workflow is constructed with a serial set of processes including peak picking, quality assurance, normalisation, missing value imputation, transformation and scaling. The combination of these processes should present the experimental data in an appropriate structure so to identify the biological changes in a valid and robust manner. OBJECTIVES: Currently, different researchers apply different data processing methods and no assessment of the permutations applied to UHPLC-MS datasets has been published. Here we wish to define the most appropriate data processing workflow. METHODS: We assess the influence of normalisation, missing value imputation, transformation and scaling methods on univariate and multivariate analysis of UHPLC-MS datasets acquired for different mammalian samples. RESULTS: Our studies have shown that once data are filtered, missing values are not correlated with m/z, retention time or response. Following an exhaustive evaluation, we recommend PQN normalisation with no missing value imputation and no transformation or scaling for univariate analysis. For PCA we recommend applying PQN normalisation with Random Forest missing value imputation, glog transformation and no scaling method. For PLS-DA we recommend PQN normalisation, KNN as the missing value imputation method, generalised logarithm transformation and no scaling. These recommendations are based on searching for the biologically important metabolite features independent of their measured abundance. CONCLUSION: The appropriate choice of normalisation, missing value imputation, transformation and scaling methods differs depending on the data analysis method and the choice of method is essential to maximise the biological derivations from UHPLC-MS datasets. More... »

PAGES

93

References to SciGraph publications

  • 2012-06. State-of-the art data normalization methods improve NMR-based metabolomic analysis in METABOLOMICS
  • 2016-12. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data in GIGASCIENCE
  • 2011-07. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry in NATURE PROTOCOLS
  • 2006-12. Centering, scaling, and transformations: improving the biological information content of metabolomics data in BMC GENOMICS
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2011-06. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst in NATURE PROTOCOLS
  • 2007-12. Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation in BMC BIOINFORMATICS
  • 2007. A Gentle Guide to the Analysis of Metabolomic Data in METABOLOMICS
  • 2012-08. The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy in METABOLOMICS
  • 2010-12. Probabilistic principal component analysis for metabolomic data in BMC BIOINFORMATICS
  • 2010-12. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data in BMC BIOINFORMATICS
  • 2007-12. Normalization method for metabolomics data using optimal selection of multiple internal standards in BMC BIOINFORMATICS
  • 2012-06. Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline in METABOLOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11306-016-1030-9

    DOI

    http://dx.doi.org/10.1007/s11306-016-1030-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046586749

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27123000


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK", 
                "MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di Guida", 
            "givenName": "Riccardo", 
            "id": "sg:person.01277567045.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277567045.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK", 
                "NERC Biomolecular Analysis Facility\u2014Metabolomics Node (NBAF-B), University of Birmingham, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Engel", 
            "givenName": "Jasper", 
            "id": "sg:person.01204217361.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204217361.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allwood", 
            "givenName": "J. William", 
            "id": "sg:person.01235401314.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235401314.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weber", 
            "givenName": "Ralf J. M.", 
            "id": "sg:person.014671172572.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671172572.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jones", 
            "givenName": "Martin R.", 
            "id": "sg:person.016175475461.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175475461.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK", 
                "NERC Biomolecular Analysis Facility\u2014Metabolomics Node (NBAF-B), University of Birmingham, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sommer", 
            "givenName": "Ulf", 
            "id": "sg:person.01232164742.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232164742.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK", 
                "NERC Biomolecular Analysis Facility\u2014Metabolomics Node (NBAF-B), University of Birmingham, B15 2TT, Birmingham, UK", 
                "Phenome Centre Birmingham, University of Birmingham, B15 2TT, Birmingham, UK", 
                "Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viant", 
            "givenName": "Mark R.", 
            "id": "sg:person.01140655554.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham", 
              "id": "https://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK", 
                "MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, B15 2TT, Birmingham, UK", 
                "Phenome Centre Birmingham, University of Birmingham, B15 2TT, Birmingham, UK", 
                "Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dunn", 
            "givenName": "Warwick B.", 
            "id": "sg:person.01042634342.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042634342.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.1402663111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000002354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pmic.200700975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003651904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-7-142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004880490", 
              "https://doi.org/10.1186/1471-2164-7-142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-011-0350-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005292288", 
              "https://doi.org/10.1007/s11306-011-0350-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006299858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-011-0366-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009770929", 
              "https://doi.org/10.1007/s11306-011-0366-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010159732", 
              "https://doi.org/10.1186/1471-2105-8-93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010159732", 
              "https://doi.org/10.1186/1471-2105-8-93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0093149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010217218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/metabo4020433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010291674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/rcm.3164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012338260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051632c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014889239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051632c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014889239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-59745-244-1_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015032763", 
              "https://doi.org/10.1007/978-1-59745-244-1_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-59745-244-1_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015032763", 
              "https://doi.org/10.1007/978-1-59745-244-1_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015396743", 
              "https://doi.org/10.1038/nprot.2011.335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac402477z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017589256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13742-016-0115-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017689491", 
              "https://doi.org/10.1186/s13742-016-0115-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13742-016-0115-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017689491", 
              "https://doi.org/10.1186/s13742-016-0115-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodchem.2014.07.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021233536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.abb.2015.08.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021507803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac302748b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021950024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phytochem.2014.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022921680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac2000994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023867987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac2000994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023867987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/17.6.520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024880743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ije/dym281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026506882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jchromb.2008.03.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026857153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027556089", 
              "https://doi.org/10.1038/nprot.2011.319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028638412", 
              "https://doi.org/10.1186/1471-2105-11-571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030581872", 
              "https://doi.org/10.1186/1471-2105-8-234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btk039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030759115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-011-0348-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032498758", 
              "https://doi.org/10.1007/s11306-011-0348-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038552263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044581026", 
              "https://doi.org/10.1186/1471-2105-11-395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmolb.2015.00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045166716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051090175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0003-2670(03)00094-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052521103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2013.09.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052916924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051437y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053369488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051437y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053369488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051080y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051080y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051495j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051495j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac103011b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055001197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac103011b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055001197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9001996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055071014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9001996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055071014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1988.10478722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10826070600914638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058372887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/63.3.581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059418581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v045.i03", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078973722", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-05", 
        "datePublishedReg": "2016-05-01", 
        "description": "INTRODUCTION: The generic metabolomics data processing workflow is constructed with a serial set of processes including peak picking, quality assurance, normalisation, missing value imputation, transformation and scaling. The combination of these processes should present the experimental data in an appropriate structure so to identify the biological changes in a valid and robust manner.\nOBJECTIVES: Currently, different researchers apply different data processing methods and no assessment of the permutations applied to UHPLC-MS datasets has been published. Here we wish to define the most appropriate data processing workflow.\nMETHODS: We assess the influence of normalisation, missing value imputation, transformation and scaling methods on univariate and multivariate analysis of UHPLC-MS datasets acquired for different mammalian samples.\nRESULTS: Our studies have shown that once data are filtered, missing values are not correlated with m/z, retention time or response. Following an exhaustive evaluation, we recommend PQN normalisation with no missing value imputation and no transformation or scaling for univariate analysis. For PCA we recommend applying PQN normalisation with Random Forest missing value imputation, glog transformation and no scaling method. For PLS-DA we recommend PQN normalisation, KNN as the missing value imputation method, generalised logarithm transformation and no scaling. These recommendations are based on searching for the biologically important metabolite features independent of their measured abundance.\nCONCLUSION: The appropriate choice of normalisation, missing value imputation, transformation and scaling methods differs depending on the data analysis method and the choice of method is essential to maximise the biological derivations from UHPLC-MS datasets.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11306-016-1030-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4107079", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1036887", 
            "issn": [
              "1573-3882", 
              "1573-3890"
            ], 
            "name": "Metabolomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling", 
        "pagination": "93", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ddebc067b7cc0bd9e1ce0f52da9243f8d061c2ac47d28b3c0484c4b25172b07c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27123000"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101274889"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11306-016-1030-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046586749"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11306-016-1030-9", 
          "https://app.dimensions.ai/details/publication/pub.1046586749"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88233_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11306-016-1030-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1030-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1030-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1030-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-1030-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11306-016-1030-9 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N868942ef268c4066b7802579c5d24b3f
    4 schema:citation sg:pub.10.1007/978-1-59745-244-1_7
    5 sg:pub.10.1007/s11306-011-0348-6
    6 sg:pub.10.1007/s11306-011-0350-z
    7 sg:pub.10.1007/s11306-011-0366-4
    8 sg:pub.10.1023/a:1010933404324
    9 sg:pub.10.1038/nprot.2011.319
    10 sg:pub.10.1038/nprot.2011.335
    11 sg:pub.10.1186/1471-2105-11-395
    12 sg:pub.10.1186/1471-2105-11-571
    13 sg:pub.10.1186/1471-2105-8-234
    14 sg:pub.10.1186/1471-2105-8-93
    15 sg:pub.10.1186/1471-2164-7-142
    16 sg:pub.10.1186/s13742-016-0115-8
    17 https://app.dimensions.ai/details/publication/pub.1078973722
    18 https://doi.org/10.1002/pmic.200700975
    19 https://doi.org/10.1002/rcm.3164
    20 https://doi.org/10.1016/j.abb.2015.08.024
    21 https://doi.org/10.1016/j.aca.2013.09.028
    22 https://doi.org/10.1016/j.foodchem.2014.07.076
    23 https://doi.org/10.1016/j.jchromb.2008.03.021
    24 https://doi.org/10.1016/j.phytochem.2014.09.009
    25 https://doi.org/10.1016/s0003-2670(03)00094-1
    26 https://doi.org/10.1021/ac051080y
    27 https://doi.org/10.1021/ac051437y
    28 https://doi.org/10.1021/ac051495j
    29 https://doi.org/10.1021/ac051632c
    30 https://doi.org/10.1021/ac103011b
    31 https://doi.org/10.1021/ac2000994
    32 https://doi.org/10.1021/ac302748b
    33 https://doi.org/10.1021/ac402477z
    34 https://doi.org/10.1021/ac9001996
    35 https://doi.org/10.1073/pnas.1402663111
    36 https://doi.org/10.1080/01621459.1988.10478722
    37 https://doi.org/10.1080/10826070600914638
    38 https://doi.org/10.1093/bioinformatics/17.6.520
    39 https://doi.org/10.1093/bioinformatics/bti708
    40 https://doi.org/10.1093/bioinformatics/btk039
    41 https://doi.org/10.1093/bioinformatics/btm069
    42 https://doi.org/10.1093/bioinformatics/btn323
    43 https://doi.org/10.1093/bioinformatics/btu813
    44 https://doi.org/10.1093/biomet/63.3.581
    45 https://doi.org/10.1093/ije/dym281
    46 https://doi.org/10.1371/journal.pone.0093149
    47 https://doi.org/10.18637/jss.v045.i03
    48 https://doi.org/10.3389/fmolb.2015.00004
    49 https://doi.org/10.3390/metabo4020433
    50 schema:datePublished 2016-05
    51 schema:datePublishedReg 2016-05-01
    52 schema:description INTRODUCTION: The generic metabolomics data processing workflow is constructed with a serial set of processes including peak picking, quality assurance, normalisation, missing value imputation, transformation and scaling. The combination of these processes should present the experimental data in an appropriate structure so to identify the biological changes in a valid and robust manner. OBJECTIVES: Currently, different researchers apply different data processing methods and no assessment of the permutations applied to UHPLC-MS datasets has been published. Here we wish to define the most appropriate data processing workflow. METHODS: We assess the influence of normalisation, missing value imputation, transformation and scaling methods on univariate and multivariate analysis of UHPLC-MS datasets acquired for different mammalian samples. RESULTS: Our studies have shown that once data are filtered, missing values are not correlated with m/z, retention time or response. Following an exhaustive evaluation, we recommend PQN normalisation with no missing value imputation and no transformation or scaling for univariate analysis. For PCA we recommend applying PQN normalisation with Random Forest missing value imputation, glog transformation and no scaling method. For PLS-DA we recommend PQN normalisation, KNN as the missing value imputation method, generalised logarithm transformation and no scaling. These recommendations are based on searching for the biologically important metabolite features independent of their measured abundance. CONCLUSION: The appropriate choice of normalisation, missing value imputation, transformation and scaling methods differs depending on the data analysis method and the choice of method is essential to maximise the biological derivations from UHPLC-MS datasets.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf N38cfabcb1fd541ee9c111b1dac4edddb
    57 Nc192fdac8a6145769ece5bbb9c29cbbf
    58 sg:journal.1036887
    59 schema:name Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling
    60 schema:pagination 93
    61 schema:productId N41d16e5ceb6246fb8c89610df6f6d620
    62 N951d932545214327b1b3dbd080a7f92a
    63 Nada82a800ccf4063b51535e85142d695
    64 Nd49ff10e2ccf4387a902b9f778341df2
    65 Ndb97464aaab540818477aa147c5b35a3
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046586749
    67 https://doi.org/10.1007/s11306-016-1030-9
    68 schema:sdDatePublished 2019-04-11T13:08
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Ned673b88c6194f01a4c4fcaa1362b6ee
    71 schema:url http://link.springer.com/10.1007%2Fs11306-016-1030-9
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N38cfabcb1fd541ee9c111b1dac4edddb schema:volumeNumber 12
    76 rdf:type schema:PublicationVolume
    77 N3a4e9d16dacc4474949384ca36c96b6d rdf:first sg:person.01232164742.59
    78 rdf:rest N55c802178f0844deb45fcbf43966d64c
    79 N3ea4967a51b84579a68a2b6ecb47980b rdf:first sg:person.016175475461.57
    80 rdf:rest N3a4e9d16dacc4474949384ca36c96b6d
    81 N41d16e5ceb6246fb8c89610df6f6d620 schema:name pubmed_id
    82 schema:value 27123000
    83 rdf:type schema:PropertyValue
    84 N5098b0be3e9146c7b040a1b2620720d7 rdf:first sg:person.01042634342.49
    85 rdf:rest rdf:nil
    86 N532f5fe0cf904104959ce53085109636 rdf:first sg:person.01204217361.87
    87 rdf:rest Nd26f8256f1fa4f5f986ca98be851a925
    88 N55c802178f0844deb45fcbf43966d64c rdf:first sg:person.01140655554.38
    89 rdf:rest N5098b0be3e9146c7b040a1b2620720d7
    90 N868942ef268c4066b7802579c5d24b3f rdf:first sg:person.01277567045.15
    91 rdf:rest N532f5fe0cf904104959ce53085109636
    92 N951d932545214327b1b3dbd080a7f92a schema:name dimensions_id
    93 schema:value pub.1046586749
    94 rdf:type schema:PropertyValue
    95 Nada82a800ccf4063b51535e85142d695 schema:name nlm_unique_id
    96 schema:value 101274889
    97 rdf:type schema:PropertyValue
    98 Nb7086c0f5c5f47b0abcf3325d6791928 rdf:first sg:person.014671172572.86
    99 rdf:rest N3ea4967a51b84579a68a2b6ecb47980b
    100 Nc192fdac8a6145769ece5bbb9c29cbbf schema:issueNumber 5
    101 rdf:type schema:PublicationIssue
    102 Nd26f8256f1fa4f5f986ca98be851a925 rdf:first sg:person.01235401314.61
    103 rdf:rest Nb7086c0f5c5f47b0abcf3325d6791928
    104 Nd49ff10e2ccf4387a902b9f778341df2 schema:name readcube_id
    105 schema:value ddebc067b7cc0bd9e1ce0f52da9243f8d061c2ac47d28b3c0484c4b25172b07c
    106 rdf:type schema:PropertyValue
    107 Ndb97464aaab540818477aa147c5b35a3 schema:name doi
    108 schema:value 10.1007/s11306-016-1030-9
    109 rdf:type schema:PropertyValue
    110 Ned673b88c6194f01a4c4fcaa1362b6ee schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Mathematical Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Statistics
    117 rdf:type schema:DefinedTerm
    118 sg:grant.4107079 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-016-1030-9
    119 rdf:type schema:MonetaryGrant
    120 sg:journal.1036887 schema:issn 1573-3882
    121 1573-3890
    122 schema:name Metabolomics
    123 rdf:type schema:Periodical
    124 sg:person.01042634342.49 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    125 schema:familyName Dunn
    126 schema:givenName Warwick B.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042634342.49
    128 rdf:type schema:Person
    129 sg:person.01140655554.38 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    130 schema:familyName Viant
    131 schema:givenName Mark R.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38
    133 rdf:type schema:Person
    134 sg:person.01204217361.87 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    135 schema:familyName Engel
    136 schema:givenName Jasper
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204217361.87
    138 rdf:type schema:Person
    139 sg:person.01232164742.59 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    140 schema:familyName Sommer
    141 schema:givenName Ulf
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232164742.59
    143 rdf:type schema:Person
    144 sg:person.01235401314.61 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    145 schema:familyName Allwood
    146 schema:givenName J. William
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235401314.61
    148 rdf:type schema:Person
    149 sg:person.01277567045.15 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    150 schema:familyName Di Guida
    151 schema:givenName Riccardo
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277567045.15
    153 rdf:type schema:Person
    154 sg:person.014671172572.86 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    155 schema:familyName Weber
    156 schema:givenName Ralf J. M.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671172572.86
    158 rdf:type schema:Person
    159 sg:person.016175475461.57 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
    160 schema:familyName Jones
    161 schema:givenName Martin R.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175475461.57
    163 rdf:type schema:Person
    164 sg:pub.10.1007/978-1-59745-244-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015032763
    165 https://doi.org/10.1007/978-1-59745-244-1_7
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11306-011-0348-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032498758
    168 https://doi.org/10.1007/s11306-011-0348-6
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s11306-011-0350-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005292288
    171 https://doi.org/10.1007/s11306-011-0350-z
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11306-011-0366-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770929
    174 https://doi.org/10.1007/s11306-011-0366-4
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    177 https://doi.org/10.1023/a:1010933404324
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nprot.2011.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027556089
    180 https://doi.org/10.1038/nprot.2011.319
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nprot.2011.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015396743
    183 https://doi.org/10.1038/nprot.2011.335
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1186/1471-2105-11-395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044581026
    186 https://doi.org/10.1186/1471-2105-11-395
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1186/1471-2105-11-571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028638412
    189 https://doi.org/10.1186/1471-2105-11-571
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1186/1471-2105-8-234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030581872
    192 https://doi.org/10.1186/1471-2105-8-234
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/1471-2105-8-93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010159732
    195 https://doi.org/10.1186/1471-2105-8-93
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1186/1471-2164-7-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004880490
    198 https://doi.org/10.1186/1471-2164-7-142
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1186/s13742-016-0115-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017689491
    201 https://doi.org/10.1186/s13742-016-0115-8
    202 rdf:type schema:CreativeWork
    203 https://app.dimensions.ai/details/publication/pub.1078973722 schema:CreativeWork
    204 https://doi.org/10.1002/pmic.200700975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003651904
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1002/rcm.3164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012338260
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.abb.2015.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021507803
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.aca.2013.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052916924
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.foodchem.2014.07.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021233536
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.jchromb.2008.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026857153
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.phytochem.2014.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022921680
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0003-2670(03)00094-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052521103
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1021/ac051080y schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997265
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1021/ac051437y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053369488
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1021/ac051495j schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997456
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1021/ac051632c schema:sameAs https://app.dimensions.ai/details/publication/pub.1014889239
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1021/ac103011b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055001197
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1021/ac2000994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023867987
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1021/ac302748b schema:sameAs https://app.dimensions.ai/details/publication/pub.1021950024
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1021/ac402477z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017589256
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1021/ac9001996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071014
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.1402663111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000002354
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1080/01621459.1988.10478722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303699
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1080/10826070600914638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058372887
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/bioinformatics/17.6.520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024880743
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/bioinformatics/bti708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283033
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/bioinformatics/btk039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030759115
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/btm069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051090175
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/bioinformatics/btn323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006299858
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bioinformatics/btu813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038552263
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/biomet/63.3.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418581
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/ije/dym281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026506882
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1371/journal.pone.0093149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010217218
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.18637/jss.v045.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672674
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.3389/fmolb.2015.00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045166716
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.3390/metabo4020433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291674
    267 rdf:type schema:CreativeWork
    268 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
    269 schema:name Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
    270 MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, B15 2TT, Birmingham, UK
    271 NERC Biomolecular Analysis Facility—Metabolomics Node (NBAF-B), University of Birmingham, B15 2TT, Birmingham, UK
    272 Phenome Centre Birmingham, University of Birmingham, B15 2TT, Birmingham, UK
    273 School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...