Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-27

AUTHORS

Desirée Hao, M. Omair Sarfaraz, Farshad Farshidfar, D. Gwyn Bebb, Camelia Y. Lee, Cynthia M. Card, Marilyn David, Aalim M. Weljie

ABSTRACT

Lung cancer causes more deaths in men and women than any other cancer related disease. Currently, few effective strategies exist to predict how patients will respond to treatment. We evaluated the serum metabolomic profiles of 25 lung cancer patients undergoing chemotherapy ± radiation to evaluate the feasibility of metabolites as temporal biomarkers of clinical outcomes. Serial serum specimens collected prospectively from lung cancer patients were analyzed using both nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography mass spectrometry (GC–MS). Multivariate statistical analysis consisted of unsupervised principal component analysis or orthogonal partial least squares discriminant analysis with significance assessed using a cross-validated ANOVA. The metabolite profiles were reflective of the temporal distinction between patient samples before during and after receiving therapy (1H-NMR, p < 0.001: and GC–MS p < 0.01). Disease progression and survival were strongly correlative with the GC–MS metabolite data whereas stage and cancer type were associated with 1H-NMR data. Metabolites such as hydroxylamine, tridecan-1-ol, octadecan-1-ol, were indicative of survival (GC–MS p < 0.05) and metabolites such as tagatose, hydroxylamine, glucopyranose, and threonine that were reflective of progression (GC–MS p < 0.05). Metabolite profiles have the potential to act as prognostic markers of clinical outcomes for lung cancer patients. Serial 1H-NMR measurements appear to detect metabolites diagnostic of tumor pathology, while GC–MS provided data better related to prognostic clinical outcomes, possibility due to physiochemical bias related to specific biochemical pathways. These results warrant further study in a larger cohort and with various treatment options. More... »

PAGES

58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-016-0961-5

DOI

http://dx.doi.org/10.1007/s11306-016-0961-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006786921

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27073350


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Desir\u00e9e", 
        "id": "sg:person.0674634745.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674634745.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine-Pathology and Molecular Medicine, McMaster University, L8N 3Z5, Hamilton, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.25073.33", 
          "name": [
            "Department of Biological Sciences, University of Calgary, T2N 1N4, Calgary, AB, Canada", 
            "Department of Medicine-Pathology and Molecular Medicine, McMaster University, L8N 3Z5, Hamilton, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarfaraz", 
        "givenName": "M. Omair", 
        "id": "sg:person.016473471445.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016473471445.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Oncology, Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Medical Oncology, Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farshidfar", 
        "givenName": "Farshad", 
        "id": "sg:person.01253745362.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253745362.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bebb", 
        "givenName": "D. Gwyn", 
        "id": "sg:person.01144601625.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144601625.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.413574.0", 
          "name": [
            "Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Camelia Y.", 
        "id": "sg:person.012777106141.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777106141.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Card", 
        "givenName": "Cynthia M.", 
        "id": "sg:person.013574466541.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574466541.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Research Unit, Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada", 
          "id": "http://www.grid.ac/institutes/grid.413574.0", 
          "name": [
            "Clinical Research Unit, Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "David", 
        "givenName": "Marilyn", 
        "id": "sg:person.014372047141.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372047141.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Biological Sciences, University of Calgary, T2N 1N4, Calgary, AB, Canada", 
            "Institute of Translational Medicine and Therapeutics, University of Pennsylvania, 19104, Philadelphia, PA, USA", 
            "Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weljie", 
        "givenName": "Aalim M.", 
        "id": "sg:person.01156467457.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156467457.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-8-230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021466917", 
          "https://doi.org/10.1186/1471-2105-8-230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:phyt.0000004185.92648.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046504200", 
          "https://doi.org/10.1023/b:phyt.0000004185.92648.ae"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-8-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037855501", 
          "https://doi.org/10.1186/1476-4598-8-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010801810", 
          "https://doi.org/10.1038/nature07762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030001320", 
          "https://doi.org/10.1038/nature06913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022312204", 
          "https://doi.org/10.1186/gm341"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-27", 
    "datePublishedReg": "2016-02-27", 
    "description": "Lung cancer causes more deaths in men and women than any other cancer related disease. Currently, few effective strategies exist to predict how patients will respond to treatment. We evaluated the serum metabolomic profiles of 25 lung cancer patients undergoing chemotherapy\u00a0\u00b1\u00a0radiation to evaluate the feasibility of metabolites as temporal biomarkers of clinical outcomes. Serial serum specimens collected prospectively from lung cancer patients were analyzed using both nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography mass spectrometry (GC\u2013MS). Multivariate statistical analysis consisted of unsupervised principal component analysis or orthogonal partial least squares discriminant analysis with significance assessed using a cross-validated ANOVA. The metabolite profiles were reflective of the temporal distinction between patient samples before during and after receiving therapy (1H-NMR, p\u00a0<\u00a00.001: and GC\u2013MS p\u00a0<\u00a00.01). Disease progression and survival were strongly correlative with the GC\u2013MS metabolite data whereas stage and cancer type were associated with 1H-NMR data. Metabolites such as hydroxylamine, tridecan-1-ol, octadecan-1-ol, were indicative of survival (GC\u2013MS p\u00a0<\u00a00.05) and metabolites such as tagatose, hydroxylamine, glucopyranose, and threonine that were reflective of progression (GC\u2013MS p\u00a0<\u00a00.05). Metabolite profiles have the potential to act as prognostic markers of clinical outcomes for lung cancer patients. Serial 1H-NMR measurements appear to detect metabolites diagnostic of tumor pathology, while GC\u2013MS provided data better related to prognostic clinical outcomes, possibility due to physiochemical bias related to specific biochemical pathways. These results warrant further study in a larger cohort and with various treatment options.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11306-016-0961-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "lung cancer patients", 
      "cancer patients", 
      "clinical outcomes", 
      "serial serum specimens", 
      "serum metabolomic profiles", 
      "serum metabolite signatures", 
      "orthogonal partial least squares discriminant analysis", 
      "treatment options", 
      "lung cancer", 
      "disease progression", 
      "prognostic marker", 
      "metabolite profiles", 
      "large cohort", 
      "patients", 
      "tumor pathology", 
      "serum specimens", 
      "more deaths", 
      "patient samples", 
      "cancer types", 
      "metabolite signatures", 
      "nuclear magnetic resonance spectroscopy", 
      "metabolomic profiles", 
      "unsupervised principal component analysis", 
      "temporal biomarkers", 
      "gas chromatography-mass spectrometry", 
      "Further studies", 
      "specific biochemical pathways", 
      "outcomes", 
      "cancer", 
      "chromatography-mass spectrometry", 
      "progression", 
      "magnetic resonance spectroscopy", 
      "survival", 
      "partial least squares discriminant analysis", 
      "metabolites", 
      "least squares discriminant analysis", 
      "treatment", 
      "mass spectrometry", 
      "squares discriminant analysis", 
      "resonance spectroscopy", 
      "metabolite data", 
      "chemotherapy", 
      "statistical analysis", 
      "effective strategy", 
      "therapy", 
      "GC-MS", 
      "cohort", 
      "disease", 
      "pathology", 
      "biomarkers", 
      "biochemical pathways", 
      "women", 
      "death", 
      "men", 
      "hydroxylamine", 
      "markers", 
      "profile", 
      "options", 
      "pathway", 
      "data", 
      "ANOVA", 
      "spectroscopy", 
      "spectrometry", 
      "glucopyranose", 
      "significance", 
      "analysis", 
      "study", 
      "specimens", 
      "temporal distinction", 
      "discriminant analysis", 
      "characterization", 
      "stage", 
      "threonine", 
      "samples", 
      "strategies", 
      "feasibility", 
      "types", 
      "bias", 
      "principal component analysis", 
      "potential", 
      "tagatose", 
      "results", 
      "component analysis", 
      "possibility", 
      "radiation", 
      "measurements", 
      "signatures", 
      "distinction", 
      "temporal characterization"
    ], 
    "name": "Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment", 
    "pagination": "58", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006786921"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-016-0961-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27073350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-016-0961-5", 
      "https://app.dimensions.ai/details/publication/pub.1006786921"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_699.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11306-016-0961-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-0961-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-0961-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-0961-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-016-0961-5'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      120 URIs      106 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-016-0961-5 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N40f7fbcf77544e4b8cc98caf70ead80e
4 schema:citation sg:pub.10.1023/b:phyt.0000004185.92648.ae
5 sg:pub.10.1038/nature06913
6 sg:pub.10.1038/nature07762
7 sg:pub.10.1186/1471-2105-8-230
8 sg:pub.10.1186/1476-4598-8-41
9 sg:pub.10.1186/gm341
10 schema:datePublished 2016-02-27
11 schema:datePublishedReg 2016-02-27
12 schema:description Lung cancer causes more deaths in men and women than any other cancer related disease. Currently, few effective strategies exist to predict how patients will respond to treatment. We evaluated the serum metabolomic profiles of 25 lung cancer patients undergoing chemotherapy ± radiation to evaluate the feasibility of metabolites as temporal biomarkers of clinical outcomes. Serial serum specimens collected prospectively from lung cancer patients were analyzed using both nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography mass spectrometry (GC–MS). Multivariate statistical analysis consisted of unsupervised principal component analysis or orthogonal partial least squares discriminant analysis with significance assessed using a cross-validated ANOVA. The metabolite profiles were reflective of the temporal distinction between patient samples before during and after receiving therapy (1H-NMR, p < 0.001: and GC–MS p < 0.01). Disease progression and survival were strongly correlative with the GC–MS metabolite data whereas stage and cancer type were associated with 1H-NMR data. Metabolites such as hydroxylamine, tridecan-1-ol, octadecan-1-ol, were indicative of survival (GC–MS p < 0.05) and metabolites such as tagatose, hydroxylamine, glucopyranose, and threonine that were reflective of progression (GC–MS p < 0.05). Metabolite profiles have the potential to act as prognostic markers of clinical outcomes for lung cancer patients. Serial 1H-NMR measurements appear to detect metabolites diagnostic of tumor pathology, while GC–MS provided data better related to prognostic clinical outcomes, possibility due to physiochemical bias related to specific biochemical pathways. These results warrant further study in a larger cohort and with various treatment options.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N165ac778a88f46fc98d23108855f9a5e
16 Nd41a3d7ae60046c19c3eeadf41cf4f23
17 sg:journal.1036887
18 schema:keywords ANOVA
19 Further studies
20 GC-MS
21 analysis
22 bias
23 biochemical pathways
24 biomarkers
25 cancer
26 cancer patients
27 cancer types
28 characterization
29 chemotherapy
30 chromatography-mass spectrometry
31 clinical outcomes
32 cohort
33 component analysis
34 data
35 death
36 discriminant analysis
37 disease
38 disease progression
39 distinction
40 effective strategy
41 feasibility
42 gas chromatography-mass spectrometry
43 glucopyranose
44 hydroxylamine
45 large cohort
46 least squares discriminant analysis
47 lung cancer
48 lung cancer patients
49 magnetic resonance spectroscopy
50 markers
51 mass spectrometry
52 measurements
53 men
54 metabolite data
55 metabolite profiles
56 metabolite signatures
57 metabolites
58 metabolomic profiles
59 more deaths
60 nuclear magnetic resonance spectroscopy
61 options
62 orthogonal partial least squares discriminant analysis
63 outcomes
64 partial least squares discriminant analysis
65 pathology
66 pathway
67 patient samples
68 patients
69 possibility
70 potential
71 principal component analysis
72 profile
73 prognostic marker
74 progression
75 radiation
76 resonance spectroscopy
77 results
78 samples
79 serial serum specimens
80 serum metabolite signatures
81 serum metabolomic profiles
82 serum specimens
83 signatures
84 significance
85 specific biochemical pathways
86 specimens
87 spectrometry
88 spectroscopy
89 squares discriminant analysis
90 stage
91 statistical analysis
92 strategies
93 study
94 survival
95 tagatose
96 temporal biomarkers
97 temporal characterization
98 temporal distinction
99 therapy
100 threonine
101 treatment
102 treatment options
103 tumor pathology
104 types
105 unsupervised principal component analysis
106 women
107 schema:name Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment
108 schema:pagination 58
109 schema:productId Na4056c708354413fa8f3559d16fa0209
110 Na57bbbb7a8dc4487afb1f2f3492ef353
111 Nc42edad4ea61435282f72a8ff455d1ff
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006786921
113 https://doi.org/10.1007/s11306-016-0961-5
114 schema:sdDatePublished 2022-09-02T16:00
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher Nd1fda55f24d4430e8f54a1cc0b543451
117 schema:url https://doi.org/10.1007/s11306-016-0961-5
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N125a2f427d2d49d2b873cbad60574d89 rdf:first sg:person.01156467457.26
122 rdf:rest rdf:nil
123 N15b85d5dbad3476485101ff86d70a132 rdf:first sg:person.01253745362.08
124 rdf:rest N5f1271523e0546b29df901cdd8792479
125 N165ac778a88f46fc98d23108855f9a5e schema:volumeNumber 12
126 rdf:type schema:PublicationVolume
127 N207ef0c17fe242de954f5be1f339b7b7 rdf:first sg:person.012777106141.68
128 rdf:rest N78b80c8153d44005927cbbbc3792ba49
129 N243af742167d4f1a9d983ed6a1f9dc6a rdf:first sg:person.016473471445.73
130 rdf:rest N15b85d5dbad3476485101ff86d70a132
131 N36fce613c1974f07a81801b642ecbd6c rdf:first sg:person.014372047141.40
132 rdf:rest N125a2f427d2d49d2b873cbad60574d89
133 N40f7fbcf77544e4b8cc98caf70ead80e rdf:first sg:person.0674634745.32
134 rdf:rest N243af742167d4f1a9d983ed6a1f9dc6a
135 N5f1271523e0546b29df901cdd8792479 rdf:first sg:person.01144601625.46
136 rdf:rest N207ef0c17fe242de954f5be1f339b7b7
137 N78b80c8153d44005927cbbbc3792ba49 rdf:first sg:person.013574466541.05
138 rdf:rest N36fce613c1974f07a81801b642ecbd6c
139 Na4056c708354413fa8f3559d16fa0209 schema:name dimensions_id
140 schema:value pub.1006786921
141 rdf:type schema:PropertyValue
142 Na57bbbb7a8dc4487afb1f2f3492ef353 schema:name doi
143 schema:value 10.1007/s11306-016-0961-5
144 rdf:type schema:PropertyValue
145 Nc42edad4ea61435282f72a8ff455d1ff schema:name pubmed_id
146 schema:value 27073350
147 rdf:type schema:PropertyValue
148 Nd1fda55f24d4430e8f54a1cc0b543451 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nd41a3d7ae60046c19c3eeadf41cf4f23 schema:issueNumber 3
151 rdf:type schema:PublicationIssue
152 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
153 schema:name Medical and Health Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
156 schema:name Oncology and Carcinogenesis
157 rdf:type schema:DefinedTerm
158 sg:journal.1036887 schema:issn 1573-3882
159 1573-3890
160 schema:name Metabolomics
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.01144601625.46 schema:affiliation grid-institutes:grid.22072.35
164 schema:familyName Bebb
165 schema:givenName D. Gwyn
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144601625.46
167 rdf:type schema:Person
168 sg:person.01156467457.26 schema:affiliation grid-institutes:grid.25879.31
169 schema:familyName Weljie
170 schema:givenName Aalim M.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156467457.26
172 rdf:type schema:Person
173 sg:person.01253745362.08 schema:affiliation grid-institutes:grid.22072.35
174 schema:familyName Farshidfar
175 schema:givenName Farshad
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253745362.08
177 rdf:type schema:Person
178 sg:person.012777106141.68 schema:affiliation grid-institutes:grid.413574.0
179 schema:familyName Lee
180 schema:givenName Camelia Y.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777106141.68
182 rdf:type schema:Person
183 sg:person.013574466541.05 schema:affiliation grid-institutes:grid.22072.35
184 schema:familyName Card
185 schema:givenName Cynthia M.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574466541.05
187 rdf:type schema:Person
188 sg:person.014372047141.40 schema:affiliation grid-institutes:grid.413574.0
189 schema:familyName David
190 schema:givenName Marilyn
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372047141.40
192 rdf:type schema:Person
193 sg:person.016473471445.73 schema:affiliation grid-institutes:grid.25073.33
194 schema:familyName Sarfaraz
195 schema:givenName M. Omair
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016473471445.73
197 rdf:type schema:Person
198 sg:person.0674634745.32 schema:affiliation grid-institutes:grid.22072.35
199 schema:familyName Hao
200 schema:givenName Desirée
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674634745.32
202 rdf:type schema:Person
203 sg:pub.10.1023/b:phyt.0000004185.92648.ae schema:sameAs https://app.dimensions.ai/details/publication/pub.1046504200
204 https://doi.org/10.1023/b:phyt.0000004185.92648.ae
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nature06913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001320
207 https://doi.org/10.1038/nature06913
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature07762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010801810
210 https://doi.org/10.1038/nature07762
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1471-2105-8-230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021466917
213 https://doi.org/10.1186/1471-2105-8-230
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/1476-4598-8-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037855501
216 https://doi.org/10.1186/1476-4598-8-41
217 rdf:type schema:CreativeWork
218 sg:pub.10.1186/gm341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022312204
219 https://doi.org/10.1186/gm341
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.22072.35 schema:alternateName Department of Medical Oncology, Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
222 Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
223 schema:name Department of Medical Oncology, Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
224 Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
225 rdf:type schema:Organization
226 grid-institutes:grid.25073.33 schema:alternateName Department of Medicine-Pathology and Molecular Medicine, McMaster University, L8N 3Z5, Hamilton, ON, Canada
227 schema:name Department of Biological Sciences, University of Calgary, T2N 1N4, Calgary, AB, Canada
228 Department of Medicine-Pathology and Molecular Medicine, McMaster University, L8N 3Z5, Hamilton, ON, Canada
229 rdf:type schema:Organization
230 grid-institutes:grid.25879.31 schema:alternateName Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
231 schema:name Department of Biological Sciences, University of Calgary, T2N 1N4, Calgary, AB, Canada
232 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
233 Institute of Translational Medicine and Therapeutics, University of Pennsylvania, 19104, Philadelphia, PA, USA
234 rdf:type schema:Organization
235 grid-institutes:grid.413574.0 schema:alternateName Clinical Research Unit, Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
236 Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
237 schema:name Clinical Research Unit, Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
238 Tom Baker Cancer Centre, 1331-29th Street N.W., T2N 4N2, Calgary, AB, Canada
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...