Plasma metabolomic profiles in association with type 2 diabetes risk and prevalence in Chinese adults View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

Danxia Yu, Steven C. Moore, Charles E. Matthews, Yong-Bing Xiang, Xianglan Zhang, Yu-Tang Gao, Wei Zheng, Xiao-Ou Shu

ABSTRACT

Metabolomic studies have identified several metabolites associated with type 2 diabetes (T2D) in populations of European ancestry. East Asians, a population of particular susceptibility to T2D, were generally not included in previous studies. We examined the associations of plasma metabolites with risk and prevalence of T2D in 976 Chinese men and women (40-74 years of age) who were participants of two prospective cohort studies and had no cardiovascular disease or cancer at baseline. Sixty-eight prevalent and 73 incident T2D cases were included. Non-targeted metabolomics was conducted that detected 689 metabolites with known identities and 690 unknown metabolites. Multivariable logistic and Cox regressions were used to evaluate the associations of standardized metabolites with diabetes risk and prevalence. We identified 36 known metabolites and 10 unknown metabolites associated with prevalent and/or incident T2D at false discovery rate <0.05. The known metabolites are involved in metabolic pathways of glycolysis/gluconeogenesis, branched-chain amino acids, other amino acids, fatty acids, glycerophospholipids, androgen, and bradykinin. Six metabolites showed independent associations with incident T2D: 1,5-anhydroglucitol, mannose, valine, 3-methoxytyrosine, docosapentaenoate (22:5n3), and bradykinin-hydroxy-pro(3). Each standard deviation increase in these metabolites was associated with a 40-150 % change in risk of developing diabetes (30-80 % after further adjustment for glucose). Risk prediction was significantly improved by adding these metabolites in addition to known T2D risk factors, including central obesity and glucose. These findings suggest that hexoses, branched-chain amino acids, and yet to be validated novel plasma metabolites may improve risk prediction and mechanistic understanding of T2D in Chinese populations. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-015-0890-8

DOI

http://dx.doi.org/10.1007/s11306-015-0890-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046764408

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27840598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, 37203, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Danxia", 
        "id": "sg:person.01226075166.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226075166.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moore", 
        "givenName": "Steven C.", 
        "id": "sg:person.010373206207.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010373206207.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.48336.3a", 
          "name": [
            "Division of Cancer Epidemiology and Genetics, National Cancer Institute, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matthews", 
        "givenName": "Charles E.", 
        "id": "sg:person.013521376177.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521376177.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200031, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Yong-Bing", 
        "id": "sg:person.010671751017.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010671751017.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, 37203, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xianglan", 
        "id": "sg:person.010353541467.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353541467.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200031, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yu-Tang", 
        "id": "sg:person.010312422777.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312422777.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, 37203, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Wei", 
        "id": "sg:person.016425765167.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425765167.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, 37203, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shu", 
        "givenName": "Xiao-Ou", 
        "id": "sg:person.015003472057.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003472057.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11306-013-0574-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000237135", 
          "https://doi.org/10.1007/s11306-013-0574-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.110.005447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000993510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002009671", 
          "https://doi.org/10.1038/nm.2307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nyas.12098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002101591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/joe-14-0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002289138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002902052", 
          "https://doi.org/10.1038/nm.3686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyv013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004048289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc11-0442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004173908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2014.3654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/480251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006844095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2013.168118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007485375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db12-0495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010275685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc11-0064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010464625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/jpet.103.049270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011112155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.d7163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011443502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11684-013-0248-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011513451", 
          "https://doi.org/10.1007/s11684-013-0248-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eurpsy.2011.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012088066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrendo.2014.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012805361", 
          "https://doi.org/10.1038/nrendo.2014.171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2009.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc12-1235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013104034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(08)60766-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015125310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db13-0570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016050719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.200900189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021440919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db12-0707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021468852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022311910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0103981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024803751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0103981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024803751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2010.356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024875212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc06-1910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(14)70144-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029186659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwt112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030590780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci68295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030745462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2152/jmi.54.243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036932462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(14)70145-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037567981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-12-1109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038410292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-009-1637-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038860665", 
          "https://doi.org/10.1007/s00125-009-1637-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-009-1637-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038860665", 
          "https://doi.org/10.1007/s00125-009-1637-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-009-1637-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038860665", 
          "https://doi.org/10.1007/s00125-009-1637-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ki.2011.499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215784", 
          "https://doi.org/10.1038/ki.2011.499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.54.5.1573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041219268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0010883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041881927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwi322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044364691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwi322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044364691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db09-0580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045035499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1001141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048191803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.2010.29182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049752350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-015-3517-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050422611", 
          "https://doi.org/10.1007/s00125-015-3517-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-015-3517-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050422611", 
          "https://doi.org/10.1007/s00125-015-3517-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/jn.110.128520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053274657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053385042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac901536h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac901536h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2011-2997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064293254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2012-4132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064294074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2013-3596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064294714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568016052773351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069192716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/134.6.1583s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076846943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/86.1.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077442453"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "Metabolomic studies have identified several metabolites associated with type 2 diabetes (T2D) in populations of European ancestry. East Asians, a population of particular susceptibility to T2D, were generally not included in previous studies. We examined the associations of plasma metabolites with risk and prevalence of T2D in 976 Chinese men and women (40-74 years of age) who were participants of two prospective cohort studies and had no cardiovascular disease or cancer at baseline. Sixty-eight prevalent and 73 incident T2D cases were included. Non-targeted metabolomics was conducted that detected 689 metabolites with known identities and 690 unknown metabolites. Multivariable logistic and Cox regressions were used to evaluate the associations of standardized metabolites with diabetes risk and prevalence. We identified 36 known metabolites and 10 unknown metabolites associated with prevalent and/or incident T2D at false discovery rate <0.05. The known metabolites are involved in metabolic pathways of glycolysis/gluconeogenesis, branched-chain amino acids, other amino acids, fatty acids, glycerophospholipids, androgen, and bradykinin. Six metabolites showed independent associations with incident T2D: 1,5-anhydroglucitol, mannose, valine, 3-methoxytyrosine, docosapentaenoate (22:5n3), and bradykinin-hydroxy-pro(3). Each standard deviation increase in these metabolites was associated with a 40-150 % change in risk of developing diabetes (30-80 % after further adjustment for glucose). Risk prediction was significantly improved by adding these metabolites in addition to known T2D risk factors, including central obesity and glucose. These findings suggest that hexoses, branched-chain amino acids, and yet to be validated novel plasma metabolites may improve risk prediction and mechanistic understanding of T2D in Chinese populations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-015-0890-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2634377", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2724427", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705363", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2540230", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3802734", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5054409", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Plasma metabolomic profiles in association with type 2 diabetes risk and prevalence in Chinese adults", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dec485446f9255143cec90d76abe18c5ce9c4d663c9f229f5b21a9aab0285a05"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27840598"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101274889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-015-0890-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046764408"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-015-0890-8", 
      "https://app.dimensions.ai/details/publication/pub.1046764408"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11306-015-0890-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0890-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0890-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0890-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0890-8'


 

This table displays all metadata directly associated to this object as RDF triples.

306 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-015-0890-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Ncd8739b25e4d47eb92f28d4660f77fe8
4 schema:citation sg:pub.10.1007/s00125-009-1637-8
5 sg:pub.10.1007/s00125-015-3517-8
6 sg:pub.10.1007/s11306-013-0574-1
7 sg:pub.10.1007/s11684-013-0248-4
8 sg:pub.10.1038/ki.2011.499
9 sg:pub.10.1038/nm.2307
10 sg:pub.10.1038/nm.3686
11 sg:pub.10.1038/nrendo.2014.171
12 https://doi.org/10.1001/archinternmed.2010.356
13 https://doi.org/10.1001/jama.2013.168118
14 https://doi.org/10.1001/jama.2014.3654
15 https://doi.org/10.1002/mnfr.200900189
16 https://doi.org/10.1016/j.cmet.2009.02.002
17 https://doi.org/10.1016/j.cmet.2012.06.006
18 https://doi.org/10.1016/j.eurpsy.2011.02.009
19 https://doi.org/10.1016/s0140-6736(08)60766-7
20 https://doi.org/10.1016/s2213-8587(14)70144-5
21 https://doi.org/10.1016/s2213-8587(14)70145-7
22 https://doi.org/10.1021/ac901536h
23 https://doi.org/10.1038/msb.2012.43
24 https://doi.org/10.1093/ajcn/86.1.189
25 https://doi.org/10.1093/aje/kwi322
26 https://doi.org/10.1093/aje/kwt112
27 https://doi.org/10.1093/ije/dyv013
28 https://doi.org/10.1093/jn/134.6.1583s
29 https://doi.org/10.1093/nar/gkl381
30 https://doi.org/10.1111/nyas.12098
31 https://doi.org/10.1124/jpet.103.049270
32 https://doi.org/10.1136/bmj.d7163
33 https://doi.org/10.1155/2012/480251
34 https://doi.org/10.1158/1055-9965.epi-12-1109
35 https://doi.org/10.1172/jci68295
36 https://doi.org/10.1210/jc.2011-2997
37 https://doi.org/10.1210/jc.2012-4132
38 https://doi.org/10.1210/jc.2013-3596
39 https://doi.org/10.1371/journal.pmed.1001141
40 https://doi.org/10.1371/journal.pone.0010883
41 https://doi.org/10.1371/journal.pone.0013953
42 https://doi.org/10.1371/journal.pone.0103981
43 https://doi.org/10.1530/joe-14-0024
44 https://doi.org/10.2152/jmi.54.243
45 https://doi.org/10.2174/1568016052773351
46 https://doi.org/10.2337/db09-0580
47 https://doi.org/10.2337/db12-0495
48 https://doi.org/10.2337/db12-0707
49 https://doi.org/10.2337/db13-0570
50 https://doi.org/10.2337/dc06-1910
51 https://doi.org/10.2337/dc11-0064
52 https://doi.org/10.2337/dc11-0442
53 https://doi.org/10.2337/dc12-1235
54 https://doi.org/10.2337/diabetes.54.5.1573
55 https://doi.org/10.3945/ajcn.110.005447
56 https://doi.org/10.3945/ajcn.2010.29182
57 https://doi.org/10.3945/jn.110.128520
58 schema:datePublished 2016-01
59 schema:datePublishedReg 2016-01-01
60 schema:description Metabolomic studies have identified several metabolites associated with type 2 diabetes (T2D) in populations of European ancestry. East Asians, a population of particular susceptibility to T2D, were generally not included in previous studies. We examined the associations of plasma metabolites with risk and prevalence of T2D in 976 Chinese men and women (40-74 years of age) who were participants of two prospective cohort studies and had no cardiovascular disease or cancer at baseline. Sixty-eight prevalent and 73 incident T2D cases were included. Non-targeted metabolomics was conducted that detected 689 metabolites with known identities and 690 unknown metabolites. Multivariable logistic and Cox regressions were used to evaluate the associations of standardized metabolites with diabetes risk and prevalence. We identified 36 known metabolites and 10 unknown metabolites associated with prevalent and/or incident T2D at false discovery rate <0.05. The known metabolites are involved in metabolic pathways of glycolysis/gluconeogenesis, branched-chain amino acids, other amino acids, fatty acids, glycerophospholipids, androgen, and bradykinin. Six metabolites showed independent associations with incident T2D: 1,5-anhydroglucitol, mannose, valine, 3-methoxytyrosine, docosapentaenoate (22:5n3), and bradykinin-hydroxy-pro(3). Each standard deviation increase in these metabolites was associated with a 40-150 % change in risk of developing diabetes (30-80 % after further adjustment for glucose). Risk prediction was significantly improved by adding these metabolites in addition to known T2D risk factors, including central obesity and glucose. These findings suggest that hexoses, branched-chain amino acids, and yet to be validated novel plasma metabolites may improve risk prediction and mechanistic understanding of T2D in Chinese populations.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N57c037089c44454da5a743503ea17867
65 Ne31cd69607854cddbae259145490eac0
66 sg:journal.1036887
67 schema:name Plasma metabolomic profiles in association with type 2 diabetes risk and prevalence in Chinese adults
68 schema:pagination 3
69 schema:productId N3a22e372556243e49a7893c9ef096add
70 N4fee916ba21344f2bb2ec71bb800c5b5
71 N97a86ed85d1a4d8abb67fd5149f332bd
72 N9f8237c2f4384ded9586b9cf3821db44
73 Nd4c7b911cde64c9dae773b31d6b0ea04
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046764408
75 https://doi.org/10.1007/s11306-015-0890-8
76 schema:sdDatePublished 2019-04-10T20:00
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nbf66e870af36485d96272c3909aa790a
79 schema:url http://link.springer.com/10.1007%2Fs11306-015-0890-8
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N3a22e372556243e49a7893c9ef096add schema:name pubmed_id
84 schema:value 27840598
85 rdf:type schema:PropertyValue
86 N3a98c3947a494dcabeb5eb11de7632da rdf:first sg:person.010312422777.39
87 rdf:rest Ne690b41420bb4b4ca241d10da3e2cf6a
88 N4fee916ba21344f2bb2ec71bb800c5b5 schema:name nlm_unique_id
89 schema:value 101274889
90 rdf:type schema:PropertyValue
91 N57c037089c44454da5a743503ea17867 schema:volumeNumber 12
92 rdf:type schema:PublicationVolume
93 N6e2d167ee60643e7bcfa577f39b14ffb rdf:first sg:person.015003472057.84
94 rdf:rest rdf:nil
95 N7d7d0dc2d3c740ea8fd58618e7db1c85 rdf:first sg:person.010353541467.77
96 rdf:rest N3a98c3947a494dcabeb5eb11de7632da
97 N8f5a6d500abe47bea17240bc3bf2ff1a rdf:first sg:person.013521376177.16
98 rdf:rest Nc97506791684433ca4f0dc73a456a307
99 N97a86ed85d1a4d8abb67fd5149f332bd schema:name doi
100 schema:value 10.1007/s11306-015-0890-8
101 rdf:type schema:PropertyValue
102 N9f8237c2f4384ded9586b9cf3821db44 schema:name dimensions_id
103 schema:value pub.1046764408
104 rdf:type schema:PropertyValue
105 Na1fe13d995c245f29d00dcacde8c2d16 rdf:first sg:person.010373206207.01
106 rdf:rest N8f5a6d500abe47bea17240bc3bf2ff1a
107 Nbf66e870af36485d96272c3909aa790a schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nc97506791684433ca4f0dc73a456a307 rdf:first sg:person.010671751017.22
110 rdf:rest N7d7d0dc2d3c740ea8fd58618e7db1c85
111 Ncd8739b25e4d47eb92f28d4660f77fe8 rdf:first sg:person.01226075166.92
112 rdf:rest Na1fe13d995c245f29d00dcacde8c2d16
113 Nd4c7b911cde64c9dae773b31d6b0ea04 schema:name readcube_id
114 schema:value dec485446f9255143cec90d76abe18c5ce9c4d663c9f229f5b21a9aab0285a05
115 rdf:type schema:PropertyValue
116 Ne31cd69607854cddbae259145490eac0 schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 Ne690b41420bb4b4ca241d10da3e2cf6a rdf:first sg:person.016425765167.70
119 rdf:rest N6e2d167ee60643e7bcfa577f39b14ffb
120 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
121 schema:name Medical and Health Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
124 schema:name Clinical Sciences
125 rdf:type schema:DefinedTerm
126 sg:grant.2540230 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-015-0890-8
127 rdf:type schema:MonetaryGrant
128 sg:grant.2634377 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-015-0890-8
129 rdf:type schema:MonetaryGrant
130 sg:grant.2705363 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-015-0890-8
131 rdf:type schema:MonetaryGrant
132 sg:grant.2724427 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-015-0890-8
133 rdf:type schema:MonetaryGrant
134 sg:grant.3802734 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-015-0890-8
135 rdf:type schema:MonetaryGrant
136 sg:grant.5054409 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-015-0890-8
137 rdf:type schema:MonetaryGrant
138 sg:journal.1036887 schema:issn 1573-3882
139 1573-3890
140 schema:name Metabolomics
141 rdf:type schema:Periodical
142 sg:person.010312422777.39 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
143 schema:familyName Gao
144 schema:givenName Yu-Tang
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312422777.39
146 rdf:type schema:Person
147 sg:person.010353541467.77 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
148 schema:familyName Zhang
149 schema:givenName Xianglan
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353541467.77
151 rdf:type schema:Person
152 sg:person.010373206207.01 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
153 schema:familyName Moore
154 schema:givenName Steven C.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010373206207.01
156 rdf:type schema:Person
157 sg:person.010671751017.22 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
158 schema:familyName Xiang
159 schema:givenName Yong-Bing
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010671751017.22
161 rdf:type schema:Person
162 sg:person.01226075166.92 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
163 schema:familyName Yu
164 schema:givenName Danxia
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226075166.92
166 rdf:type schema:Person
167 sg:person.013521376177.16 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
168 schema:familyName Matthews
169 schema:givenName Charles E.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521376177.16
171 rdf:type schema:Person
172 sg:person.015003472057.84 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
173 schema:familyName Shu
174 schema:givenName Xiao-Ou
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003472057.84
176 rdf:type schema:Person
177 sg:person.016425765167.70 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
178 schema:familyName Zheng
179 schema:givenName Wei
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425765167.70
181 rdf:type schema:Person
182 sg:pub.10.1007/s00125-009-1637-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038860665
183 https://doi.org/10.1007/s00125-009-1637-8
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00125-015-3517-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050422611
186 https://doi.org/10.1007/s00125-015-3517-8
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s11306-013-0574-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000237135
189 https://doi.org/10.1007/s11306-013-0574-1
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s11684-013-0248-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011513451
192 https://doi.org/10.1007/s11684-013-0248-4
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/ki.2011.499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041215784
195 https://doi.org/10.1038/ki.2011.499
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nm.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002009671
198 https://doi.org/10.1038/nm.2307
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nm.3686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002902052
201 https://doi.org/10.1038/nm.3686
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nrendo.2014.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012805361
204 https://doi.org/10.1038/nrendo.2014.171
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1001/archinternmed.2010.356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024875212
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1001/jama.2013.168118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007485375
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1001/jama.2014.3654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355239
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/mnfr.200900189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021440919
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.cmet.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089119
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.cmet.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022311910
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.eurpsy.2011.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012088066
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0140-6736(08)60766-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015125310
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s2213-8587(14)70144-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029186659
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s2213-8587(14)70145-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037567981
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/ac901536h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071598
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1038/msb.2012.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445284
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/ajcn/86.1.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077442453
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/aje/kwi322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044364691
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/aje/kwt112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030590780
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/ije/dyv013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004048289
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/jn/134.6.1583s schema:sameAs https://app.dimensions.ai/details/publication/pub.1076846943
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkl381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884763
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1111/nyas.12098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002101591
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1124/jpet.103.049270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011112155
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1136/bmj.d7163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011443502
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1155/2012/480251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006844095
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1158/1055-9965.epi-12-1109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038410292
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1172/jci68295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030745462
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1210/jc.2011-2997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064293254
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1210/jc.2012-4132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064294074
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1210/jc.2013-3596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064294714
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pmed.1001141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048191803
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pone.0010883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041881927
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pone.0013953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385042
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pone.0103981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024803751
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1530/joe-14-0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002289138
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2152/jmi.54.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036932462
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2174/1568016052773351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069192716
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2337/db09-0580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045035499
275 rdf:type schema:CreativeWork
276 https://doi.org/10.2337/db12-0495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010275685
277 rdf:type schema:CreativeWork
278 https://doi.org/10.2337/db12-0707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021468852
279 rdf:type schema:CreativeWork
280 https://doi.org/10.2337/db13-0570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016050719
281 rdf:type schema:CreativeWork
282 https://doi.org/10.2337/dc06-1910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042527
283 rdf:type schema:CreativeWork
284 https://doi.org/10.2337/dc11-0064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010464625
285 rdf:type schema:CreativeWork
286 https://doi.org/10.2337/dc11-0442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004173908
287 rdf:type schema:CreativeWork
288 https://doi.org/10.2337/dc12-1235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013104034
289 rdf:type schema:CreativeWork
290 https://doi.org/10.2337/diabetes.54.5.1573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041219268
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3945/ajcn.110.005447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000993510
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3945/ajcn.2010.29182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049752350
295 rdf:type schema:CreativeWork
296 https://doi.org/10.3945/jn.110.128520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053274657
297 rdf:type schema:CreativeWork
298 https://www.grid.ac/institutes/grid.152326.1 schema:alternateName Vanderbilt University
299 schema:name Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, 37203, Nashville, TN, USA
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
302 schema:name Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200031, Shanghai, China
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.48336.3a schema:alternateName National Cancer Institute
305 schema:name Division of Cancer Epidemiology and Genetics, National Cancer Institute, 20892, Bethesda, MD, USA
306 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...