Design and evaluation of standard lipid prediction models based on 1H-NMR spectroscopy of human serum/plasma samples View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Rubén Barrilero, Eduard Llobet, Roger Mallol, Jesús Brezmes, Lluis Masana, M. Ángeles Zulet, J. Alfredo Martínez, Josep Ribalta, Mònica Bulló, Xavier Correig

ABSTRACT

New approaches are increasingly being used for studying and evaluating coronary heart disease (CHD), especially since the irruption of metabolomics. The classical approach is to use enzymatically-measured standard lipids and these are still the main markers for assessing risk of CHD. Since metabolomics relies on advanced analytical technologies, such as MS and NMR, using them to estimate standard lipids would be of great interest because there is no need for additional biochemical measures. The present study evaluates partial least squares and N-way partial least squares regression models to predict standard lipid concentrations by using serum and plasma sample sets from various clinical centres. Information provided by editing NMR techniques and 2D diffusion NMR was incorporated in these models using four different data structures. Firstly, the models were calibrated and validated with three of the four sample sets (n = 591) involved. Then the best estimation models were selected and applied to the left-out sample set. This evaluation of a new sample set gave correlation coefficients of predicted versus biochemical variables above 0.86 and %rRMSE lower than 18 %. These values are similar to those found by other studies although, in our case, the results are more general because we used a higher number of samples (n = 785) from different sample sets, different clinical centres and different blood matrices (serum and plasma). Finally, we compared the performance of NMR predicted lipids and enzymatically measured lipids in a clinical case study. More... »

PAGES

1394-1404

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-015-0796-5

DOI

http://dx.doi.org/10.1007/s11306-015-0796-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037273577


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Dept. Enginyeria Electr\u00f2nica, Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain", 
            "Institut d\u2019Investigaci\u00f3 Sanit\u00e0ria Pere Virgili (IISPV), Reus, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades metab\u00f3licas Asociadas (CIBERDEM), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barrilero", 
        "givenName": "Rub\u00e9n", 
        "id": "sg:person.014253425033.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014253425033.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Dept. Enginyeria Electr\u00f2nica, Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain", 
            "Institut d\u2019Investigaci\u00f3 Sanit\u00e0ria Pere Virgili (IISPV), Reus, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades metab\u00f3licas Asociadas (CIBERDEM), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Llobet", 
        "givenName": "Eduard", 
        "id": "sg:person.01100214670.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100214670.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rovira i Virgili University", 
          "id": "https://www.grid.ac/institutes/grid.410367.7", 
          "name": [
            "Dept. Enginyeria Electr\u00f2nica, Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mallol", 
        "givenName": "Roger", 
        "id": "sg:person.01167024201.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167024201.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Dept. Enginyeria Electr\u00f2nica, Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain", 
            "Institut d\u2019Investigaci\u00f3 Sanit\u00e0ria Pere Virgili (IISPV), Reus, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades metab\u00f3licas Asociadas (CIBERDEM), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brezmes", 
        "givenName": "Jes\u00fas", 
        "id": "sg:person.01256572340.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256572340.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Universitari Sant Joan de Reus", 
          "id": "https://www.grid.ac/institutes/grid.411136.0", 
          "name": [
            "Institut d\u2019Investigaci\u00f3 Sanit\u00e0ria Pere Virgili (IISPV), Reus, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades metab\u00f3licas Asociadas (CIBERDEM), Madrid, Spain", 
            "Research Unit on Lipids and Arteriosclerosis, Hospital Universitari de Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masana", 
        "givenName": "Lluis", 
        "id": "sg:person.015421614674.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421614674.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Navarra", 
          "id": "https://www.grid.ac/institutes/grid.5924.a", 
          "name": [
            "CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain", 
            "CIBERobn, Department of Physiology and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zulet", 
        "givenName": "M. \u00c1ngeles", 
        "id": "sg:person.01363023137.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363023137.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Navarra", 
          "id": "https://www.grid.ac/institutes/grid.5924.a", 
          "name": [
            "CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain", 
            "CIBERobn, Department of Physiology and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez", 
        "givenName": "J. Alfredo", 
        "id": "sg:person.01052334317.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052334317.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Universitari Sant Joan de Reus", 
          "id": "https://www.grid.ac/institutes/grid.411136.0", 
          "name": [
            "Institut d\u2019Investigaci\u00f3 Sanit\u00e0ria Pere Virgili (IISPV), Reus, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades metab\u00f3licas Asociadas (CIBERDEM), Madrid, Spain", 
            "Research Unit on Lipids and Arteriosclerosis, Hospital Universitari de Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ribalta", 
        "givenName": "Josep", 
        "id": "sg:person.01324546145.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324546145.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Human Nutrition Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain", 
            "CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bull\u00f3", 
        "givenName": "M\u00f2nica", 
        "id": "sg:person.01201765723.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201765723.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Salud Carlos III", 
          "id": "https://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Dept. Enginyeria Electr\u00f2nica, Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain", 
            "Institut d\u2019Investigaci\u00f3 Sanit\u00e0ria Pere Virgili (IISPV), Reus, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades metab\u00f3licas Asociadas (CIBERDEM), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Correig", 
        "givenName": "Xavier", 
        "id": "sg:person.01044624660.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044624660.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jmre.1997.1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000847768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2004.10.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001451185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002009671", 
          "https://doi.org/10.1038/nm.2307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0519312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004070508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0519312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004070508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2005.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006292917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2005.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006292917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jff.2012.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007475813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2011.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010360821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnmrs.2012.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011162008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2012.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015508901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.108.816181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019076880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2004.046748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024993781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-s2-s8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026417188", 
          "https://doi.org/10.1186/1471-2105-8-s2-s8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m700285-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028507746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-128x(199601)10:1<47::aid-cem400>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029561603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-1492(200008)13:5<271::aid-nbm646>3.0.co;2-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036013502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacl.2008.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044043956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1997.1352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044822585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045374897", 
          "https://doi.org/10.1038/nprot.2007.376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0273-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049178596", 
          "https://doi.org/10.1007/s11306-011-0273-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6565(95)01013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053112178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00101a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac048630x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac048630x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac402571z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055004870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.4049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.4049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074867853", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circ.106.25.3143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075204771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080284174", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424869", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083291521", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "New approaches are increasingly being used for studying and evaluating coronary heart disease (CHD), especially since the irruption of metabolomics. The classical approach is to use enzymatically-measured standard lipids and these are still the main markers for assessing risk of CHD. Since metabolomics relies on advanced analytical technologies, such as MS and NMR, using them to estimate standard lipids would be of great interest because there is no need for additional biochemical measures. The present study evaluates partial least squares and N-way partial least squares regression models to predict standard lipid concentrations by using serum and plasma sample sets from various clinical centres. Information provided by editing NMR techniques and 2D diffusion NMR was incorporated in these models using four different data structures. Firstly, the models were calibrated and validated with three of the four sample sets (n = 591) involved. Then the best estimation models were selected and applied to the left-out sample set. This evaluation of a new sample set gave correlation coefficients of predicted versus biochemical variables above 0.86 and %rRMSE lower than 18 %. These values are similar to those found by other studies although, in our case, the results are more general because we used a higher number of samples (n = 785) from different sample sets, different clinical centres and different blood matrices (serum and plasma). Finally, we compared the performance of NMR predicted lipids and enzymatically measured lipids in a clinical case study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-015-0796-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Design and evaluation of standard lipid prediction models based on 1H-NMR spectroscopy of human serum/plasma samples", 
    "pagination": "1394-1404", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b18ee6170b14a7e1a499f7f3f731de19ec93e75f176ef77e1dad8758d9dfe6c2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-015-0796-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037273577"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-015-0796-5", 
      "https://app.dimensions.ai/details/publication/pub.1037273577"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11306-015-0796-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0796-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0796-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0796-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-015-0796-5'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-015-0796-5 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N69c981d6587e404db5234ef674506117
4 schema:citation sg:pub.10.1007/s11306-011-0273-8
5 sg:pub.10.1038/nm.2307
6 sg:pub.10.1038/nprot.2007.376
7 sg:pub.10.1186/1471-2105-8-s2-s8
8 https://app.dimensions.ai/details/publication/pub.1074867853
9 https://app.dimensions.ai/details/publication/pub.1080284174
10 https://app.dimensions.ai/details/publication/pub.1082424869
11 https://app.dimensions.ai/details/publication/pub.1083291521
12 https://doi.org/10.1002/(sici)1099-128x(199601)10:1<47::aid-cem400>3.0.co;2-c
13 https://doi.org/10.1002/1099-1492(200008)13:5<271::aid-nbm646>3.0.co;2-7
14 https://doi.org/10.1006/jmre.1997.1123
15 https://doi.org/10.1006/jmre.1997.1352
16 https://doi.org/10.1016/0079-6565(95)01013-0
17 https://doi.org/10.1016/j.aca.2004.10.052
18 https://doi.org/10.1016/j.atherosclerosis.2012.02.003
19 https://doi.org/10.1016/j.chemolab.2011.08.009
20 https://doi.org/10.1016/j.jacl.2008.06.013
21 https://doi.org/10.1016/j.jff.2012.07.007
22 https://doi.org/10.1016/j.jmr.2005.05.018
23 https://doi.org/10.1016/j.pnmrs.2012.09.001
24 https://doi.org/10.1021/ac00101a004
25 https://doi.org/10.1021/ac048630x
26 https://doi.org/10.1021/ac0519312
27 https://doi.org/10.1021/ac402571z
28 https://doi.org/10.1103/physrevlett.72.4049
29 https://doi.org/10.1161/circ.106.25.3143
30 https://doi.org/10.1161/circulationaha.108.816181
31 https://doi.org/10.1194/jlr.m700285-jlr200
32 https://doi.org/10.1373/clinchem.2004.046748
33 schema:datePublished 2015-10
34 schema:datePublishedReg 2015-10-01
35 schema:description New approaches are increasingly being used for studying and evaluating coronary heart disease (CHD), especially since the irruption of metabolomics. The classical approach is to use enzymatically-measured standard lipids and these are still the main markers for assessing risk of CHD. Since metabolomics relies on advanced analytical technologies, such as MS and NMR, using them to estimate standard lipids would be of great interest because there is no need for additional biochemical measures. The present study evaluates partial least squares and N-way partial least squares regression models to predict standard lipid concentrations by using serum and plasma sample sets from various clinical centres. Information provided by editing NMR techniques and 2D diffusion NMR was incorporated in these models using four different data structures. Firstly, the models were calibrated and validated with three of the four sample sets (n = 591) involved. Then the best estimation models were selected and applied to the left-out sample set. This evaluation of a new sample set gave correlation coefficients of predicted versus biochemical variables above 0.86 and %rRMSE lower than 18 %. These values are similar to those found by other studies although, in our case, the results are more general because we used a higher number of samples (n = 785) from different sample sets, different clinical centres and different blood matrices (serum and plasma). Finally, we compared the performance of NMR predicted lipids and enzymatically measured lipids in a clinical case study.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Nbcb1b9adef7c42b896568f3750858b4f
40 Ncf027a56c35546b58c38fbb8e3be4f6c
41 sg:journal.1036887
42 schema:name Design and evaluation of standard lipid prediction models based on 1H-NMR spectroscopy of human serum/plasma samples
43 schema:pagination 1394-1404
44 schema:productId N1d9c33c4a9534bdf952adc6cf005becb
45 N707e1c351e934d65a95a3d2846f1fed3
46 Nfde00a74bbb44479a23d47cf3c043353
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037273577
48 https://doi.org/10.1007/s11306-015-0796-5
49 schema:sdDatePublished 2019-04-10T17:34
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N0823726025374ea0ae4514ea828f0c49
52 schema:url http://link.springer.com/10.1007%2Fs11306-015-0796-5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0823726025374ea0ae4514ea828f0c49 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N1d9c33c4a9534bdf952adc6cf005becb schema:name readcube_id
59 schema:value b18ee6170b14a7e1a499f7f3f731de19ec93e75f176ef77e1dad8758d9dfe6c2
60 rdf:type schema:PropertyValue
61 N21e1d28409254ef89f38b9defb0004c5 rdf:first sg:person.01324546145.50
62 rdf:rest Ne9c86d87a36c4a96b71d05a9e2e63230
63 N5024bfd76a2c431a94c2e3a263050fa3 rdf:first sg:person.015421614674.69
64 rdf:rest Nfe74011aace74e5bb17d061bca754e6c
65 N53e40898ede04cd793e09737829ffcca rdf:first sg:person.01044624660.55
66 rdf:rest rdf:nil
67 N54ddec37b51f4ac583dd6e8b3bd43957 rdf:first sg:person.01052334317.42
68 rdf:rest N21e1d28409254ef89f38b9defb0004c5
69 N67657c410816451ba4b89f2ca502c8b2 rdf:first sg:person.01256572340.45
70 rdf:rest N5024bfd76a2c431a94c2e3a263050fa3
71 N69c981d6587e404db5234ef674506117 rdf:first sg:person.014253425033.12
72 rdf:rest Nfb3cee8f6dde451393474d19691bf7fd
73 N707e1c351e934d65a95a3d2846f1fed3 schema:name doi
74 schema:value 10.1007/s11306-015-0796-5
75 rdf:type schema:PropertyValue
76 Nbcb1b9adef7c42b896568f3750858b4f schema:issueNumber 5
77 rdf:type schema:PublicationIssue
78 Ncf027a56c35546b58c38fbb8e3be4f6c schema:volumeNumber 11
79 rdf:type schema:PublicationVolume
80 Ne52bfa1afc3d44c4888df59ef76af6d2 rdf:first sg:person.01167024201.50
81 rdf:rest N67657c410816451ba4b89f2ca502c8b2
82 Ne9c86d87a36c4a96b71d05a9e2e63230 rdf:first sg:person.01201765723.85
83 rdf:rest N53e40898ede04cd793e09737829ffcca
84 Nfb3cee8f6dde451393474d19691bf7fd rdf:first sg:person.01100214670.83
85 rdf:rest Ne52bfa1afc3d44c4888df59ef76af6d2
86 Nfde00a74bbb44479a23d47cf3c043353 schema:name dimensions_id
87 schema:value pub.1037273577
88 rdf:type schema:PropertyValue
89 Nfe74011aace74e5bb17d061bca754e6c rdf:first sg:person.01363023137.43
90 rdf:rest N54ddec37b51f4ac583dd6e8b3bd43957
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
95 schema:name Analytical Chemistry
96 rdf:type schema:DefinedTerm
97 sg:journal.1036887 schema:issn 1573-3882
98 1573-3890
99 schema:name Metabolomics
100 rdf:type schema:Periodical
101 sg:person.01044624660.55 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
102 schema:familyName Correig
103 schema:givenName Xavier
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044624660.55
105 rdf:type schema:Person
106 sg:person.01052334317.42 schema:affiliation https://www.grid.ac/institutes/grid.5924.a
107 schema:familyName Martínez
108 schema:givenName J. Alfredo
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052334317.42
110 rdf:type schema:Person
111 sg:person.01100214670.83 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
112 schema:familyName Llobet
113 schema:givenName Eduard
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100214670.83
115 rdf:type schema:Person
116 sg:person.01167024201.50 schema:affiliation https://www.grid.ac/institutes/grid.410367.7
117 schema:familyName Mallol
118 schema:givenName Roger
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167024201.50
120 rdf:type schema:Person
121 sg:person.01201765723.85 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
122 schema:familyName Bulló
123 schema:givenName Mònica
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201765723.85
125 rdf:type schema:Person
126 sg:person.01256572340.45 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
127 schema:familyName Brezmes
128 schema:givenName Jesús
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256572340.45
130 rdf:type schema:Person
131 sg:person.01324546145.50 schema:affiliation https://www.grid.ac/institutes/grid.411136.0
132 schema:familyName Ribalta
133 schema:givenName Josep
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324546145.50
135 rdf:type schema:Person
136 sg:person.01363023137.43 schema:affiliation https://www.grid.ac/institutes/grid.5924.a
137 schema:familyName Zulet
138 schema:givenName M. Ángeles
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363023137.43
140 rdf:type schema:Person
141 sg:person.014253425033.12 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
142 schema:familyName Barrilero
143 schema:givenName Rubén
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014253425033.12
145 rdf:type schema:Person
146 sg:person.015421614674.69 schema:affiliation https://www.grid.ac/institutes/grid.411136.0
147 schema:familyName Masana
148 schema:givenName Lluis
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421614674.69
150 rdf:type schema:Person
151 sg:pub.10.1007/s11306-011-0273-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049178596
152 https://doi.org/10.1007/s11306-011-0273-8
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nm.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002009671
155 https://doi.org/10.1038/nm.2307
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nprot.2007.376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045374897
158 https://doi.org/10.1038/nprot.2007.376
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-8-s2-s8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026417188
161 https://doi.org/10.1186/1471-2105-8-s2-s8
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1074867853 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1080284174 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1082424869 schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1083291521 schema:CreativeWork
167 https://doi.org/10.1002/(sici)1099-128x(199601)10:1<47::aid-cem400>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1029561603
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/1099-1492(200008)13:5<271::aid-nbm646>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036013502
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1006/jmre.1997.1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000847768
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/jmre.1997.1352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044822585
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0079-6565(95)01013-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053112178
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.aca.2004.10.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001451185
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.atherosclerosis.2012.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015508901
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.chemolab.2011.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010360821
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jacl.2008.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044043956
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jff.2012.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007475813
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jmr.2005.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006292917
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.pnmrs.2012.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011162008
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/ac00101a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054972006
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/ac048630x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054996187
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ac0519312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004070508
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/ac402571z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055004870
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.72.4049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809262
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1161/circ.106.25.3143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075204771
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1161/circulationaha.108.816181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019076880
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1194/jlr.m700285-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028507746
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1373/clinchem.2004.046748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024993781
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.410367.7 schema:alternateName Rovira i Virgili University
210 schema:name Dept. Enginyeria Electrònica, Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.411136.0 schema:alternateName Hospital Universitari Sant Joan de Reus
213 schema:name Centro de Investigación Biomédica en Red de Diabetes y Enfermedades metabólicas Asociadas (CIBERDEM), Madrid, Spain
214 Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
215 Research Unit on Lipids and Arteriosclerosis, Hospital Universitari de Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.413448.e schema:alternateName Instituto de Salud Carlos III
218 schema:name CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
219 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades metabólicas Asociadas (CIBERDEM), Madrid, Spain
220 Dept. Enginyeria Electrònica, Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain
221 Human Nutrition Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain
222 Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.5924.a schema:alternateName University of Navarra
225 schema:name CIBERobn, Department of Physiology and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
226 CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...