Untargeted metabolomics studies employing NMR and LC–MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-11-05

AUTHORS

Timothy Hamerly, Brian P. Tripet, Michelle Tigges, Richard J. Giannone, Louie Wurch, Robert L. Hettich, Mircea Podar, Valerie Copié, Brian Bothner

ABSTRACT

Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC–MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans, including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans’s consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans. Combining LC–MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites. More... »

PAGES

895-907

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-014-0747-6

DOI

http://dx.doi.org/10.1007/s11306-014-0747-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031503245

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26273237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamerly", 
        "givenName": "Timothy", 
        "id": "sg:person.01157340154.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157340154.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tripet", 
        "givenName": "Brian P.", 
        "id": "sg:person.0672012532.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672012532.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tigges", 
        "givenName": "Michelle", 
        "id": "sg:person.015261314145.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261314145.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giannone", 
        "givenName": "Richard J.", 
        "id": "sg:person.01053610402.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053610402.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Microbiology, University of Tennessee, 37996, Knoxville, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Department of Microbiology, University of Tennessee, 37996, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wurch", 
        "givenName": "Louie", 
        "id": "sg:person.01111626120.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111626120.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hettich", 
        "givenName": "Robert L.", 
        "id": "sg:person.01233336244.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233336244.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Microbiology, University of Tennessee, 37996, Knoxville, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
            "Department of Microbiology, University of Tennessee, 37996, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Podar", 
        "givenName": "Mircea", 
        "id": "sg:person.01334660037.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334660037.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Biology Institute, Montana State University, 59717, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA", 
            "Thermal Biology Institute, Montana State University, 59717, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Copi\u00e9", 
        "givenName": "Valerie", 
        "id": "sg:person.01061071721.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061071721.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Biology Institute, Montana State University, 59717, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA", 
            "Thermal Biology Institute, Montana State University, 59717, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bothner", 
        "givenName": "Brian", 
        "id": "sg:person.01166232543.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166232543.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10482-012-9748-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008276135", 
          "https://doi.org/10.1007/s10482-012-9748-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028394359", 
          "https://doi.org/10.1186/1471-2105-13-243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2014.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017428659", 
          "https://doi.org/10.1038/ismej.2014.112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00203-004-0725-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019445933", 
          "https://doi.org/10.1007/s00203-004-0725-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/417063a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012444409", 
          "https://doi.org/10.1038/417063a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2045-3701-2-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032412581", 
          "https://doi.org/10.1186/2045-3701-2-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-11-r158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051170330", 
          "https://doi.org/10.1186/gb-2008-9-11-r158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00203-008-0402-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013570847", 
          "https://doi.org/10.1007/s00203-008-0402-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11-05", 
    "datePublishedReg": "2014-11-05", 
    "description": "Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC\u2013MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans, including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans\u2019s consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans. Combining LC\u2013MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11306-014-0747-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2437868", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2675012", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4320928", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "host-microbe systems", 
      "microbial community formation", 
      "own metabolic needs", 
      "relative enzyme levels", 
      "transfer of metabolites", 
      "organismal level", 
      "genetic tools", 
      "microbial species", 
      "complex organisms", 
      "CTP biosynthesis", 
      "equitans", 
      "proteomic data", 
      "hospitalis", 
      "shotgun proteomics", 
      "systems biology", 
      "interspecies interactions", 
      "cellular metabolites", 
      "metabolic pathways", 
      "Ignicoccus", 
      "metabolite pools", 
      "biomass production", 
      "metabolic coupling", 
      "molecular-level interactions", 
      "metabolic needs", 
      "NMR metabolomics datasets", 
      "metabolomics data", 
      "LC-MS", 
      "energetic implications", 
      "such interactions", 
      "disease states", 
      "NMR metabolomics", 
      "metabolic changes", 
      "genome", 
      "proteomics", 
      "biosynthesis", 
      "organisms", 
      "metabolomics experiments", 
      "metabolomics studies", 
      "significant fraction", 
      "biology", 
      "metabolites", 
      "species", 
      "enzyme levels", 
      "interaction", 
      "better understanding", 
      "pathway", 
      "metabolomics datasets", 
      "untargeted metabolomics experiments", 
      "isoleucine", 
      "metabolomics", 
      "infectious diseases", 
      "pool", 
      "growth", 
      "untargeted metabolomics studies", 
      "identification", 
      "insights", 
      "arginine", 
      "mechanism", 
      "production", 
      "levels", 
      "community", 
      "community formation", 
      "formation", 
      "understanding", 
      "presence", 
      "basis", 
      "data", 
      "study", 
      "useful insights", 
      "complex models", 
      "fraction", 
      "changes", 
      "disease", 
      "transfer", 
      "quantitation", 
      "laboratory", 
      "experiments", 
      "system", 
      "NMR", 
      "tool", 
      "findings", 
      "implications", 
      "effect", 
      "datasets", 
      "cellular networks", 
      "information", 
      "network", 
      "state", 
      "consumption", 
      "model", 
      "construction", 
      "coupling", 
      "coverage", 
      "need", 
      "simpler real-world host-microbe systems", 
      "real-world host-microbe systems", 
      "key molecular-level interactions", 
      "hyperthermophilic microbial species", 
      "archaea Ignicoccus", 
      "Nanoarcheum equitans", 
      "exploits metabolites", 
      "equitans\u2019s consumption", 
      "archaeal host Ignicoccus", 
      "host Ignicoccus"
    ], 
    "name": "Untargeted metabolomics studies employing NMR and LC\u2013MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis", 
    "pagination": "895-907", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031503245"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-014-0747-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26273237"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-014-0747-6", 
      "https://app.dimensions.ai/details/publication/pub.1031503245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_640.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11306-014-0747-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0747-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0747-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0747-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0747-6'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      22 PREDICATES      139 URIs      122 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-014-0747-6 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:0605
4 schema:author Nf9bed29527ee42449ad36ba8e9bfc587
5 schema:citation sg:pub.10.1007/s00203-004-0725-x
6 sg:pub.10.1007/s00203-008-0402-6
7 sg:pub.10.1007/s10482-012-9748-5
8 sg:pub.10.1038/417063a
9 sg:pub.10.1038/ismej.2014.112
10 sg:pub.10.1186/1471-2105-13-243
11 sg:pub.10.1186/2045-3701-2-29
12 sg:pub.10.1186/gb-2008-9-11-r158
13 schema:datePublished 2014-11-05
14 schema:datePublishedReg 2014-11-05
15 schema:description Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC–MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans, including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans’s consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans. Combining LC–MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N183935feeb344e4fbd66a9487e38990c
20 N6382422da8b54d22a0ac76c0cd26ca3c
21 sg:journal.1036887
22 schema:keywords CTP biosynthesis
23 Ignicoccus
24 LC-MS
25 NMR
26 NMR metabolomics
27 NMR metabolomics datasets
28 Nanoarcheum equitans
29 archaea Ignicoccus
30 archaeal host Ignicoccus
31 arginine
32 basis
33 better understanding
34 biology
35 biomass production
36 biosynthesis
37 cellular metabolites
38 cellular networks
39 changes
40 community
41 community formation
42 complex models
43 complex organisms
44 construction
45 consumption
46 coupling
47 coverage
48 data
49 datasets
50 disease
51 disease states
52 effect
53 energetic implications
54 enzyme levels
55 equitans
56 equitans’s consumption
57 experiments
58 exploits metabolites
59 findings
60 formation
61 fraction
62 genetic tools
63 genome
64 growth
65 hospitalis
66 host Ignicoccus
67 host-microbe systems
68 hyperthermophilic microbial species
69 identification
70 implications
71 infectious diseases
72 information
73 insights
74 interaction
75 interspecies interactions
76 isoleucine
77 key molecular-level interactions
78 laboratory
79 levels
80 mechanism
81 metabolic changes
82 metabolic coupling
83 metabolic needs
84 metabolic pathways
85 metabolite pools
86 metabolites
87 metabolomics
88 metabolomics data
89 metabolomics datasets
90 metabolomics experiments
91 metabolomics studies
92 microbial community formation
93 microbial species
94 model
95 molecular-level interactions
96 need
97 network
98 organismal level
99 organisms
100 own metabolic needs
101 pathway
102 pool
103 presence
104 production
105 proteomic data
106 proteomics
107 quantitation
108 real-world host-microbe systems
109 relative enzyme levels
110 shotgun proteomics
111 significant fraction
112 simpler real-world host-microbe systems
113 species
114 state
115 study
116 such interactions
117 system
118 systems biology
119 tool
120 transfer
121 transfer of metabolites
122 understanding
123 untargeted metabolomics experiments
124 untargeted metabolomics studies
125 useful insights
126 schema:name Untargeted metabolomics studies employing NMR and LC–MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis
127 schema:pagination 895-907
128 schema:productId N45562614a81447aa8b3e86f1b3de56e3
129 N50d555441a704ce4ac73fffec66443ad
130 N60348fa85b9847c3820b1d9fab63bda7
131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031503245
132 https://doi.org/10.1007/s11306-014-0747-6
133 schema:sdDatePublished 2021-11-01T18:22
134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
135 schema:sdPublisher N49031817c4b64d53b7dcf1b0bee88d80
136 schema:url https://doi.org/10.1007/s11306-014-0747-6
137 sgo:license sg:explorer/license/
138 sgo:sdDataset articles
139 rdf:type schema:ScholarlyArticle
140 N12bfca4c2030405aadccc0f268cd8e87 rdf:first sg:person.01233336244.31
141 rdf:rest Nd0fa96b5ae364aef8508d3adbe8465f0
142 N150ac2f7df494316be3b0f32103436d8 rdf:first sg:person.01166232543.33
143 rdf:rest rdf:nil
144 N183935feeb344e4fbd66a9487e38990c schema:volumeNumber 11
145 rdf:type schema:PublicationVolume
146 N45562614a81447aa8b3e86f1b3de56e3 schema:name dimensions_id
147 schema:value pub.1031503245
148 rdf:type schema:PropertyValue
149 N49031817c4b64d53b7dcf1b0bee88d80 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N50d555441a704ce4ac73fffec66443ad schema:name doi
152 schema:value 10.1007/s11306-014-0747-6
153 rdf:type schema:PropertyValue
154 N60348fa85b9847c3820b1d9fab63bda7 schema:name pubmed_id
155 schema:value 26273237
156 rdf:type schema:PropertyValue
157 N6382422da8b54d22a0ac76c0cd26ca3c schema:issueNumber 4
158 rdf:type schema:PublicationIssue
159 N76d628c9292f470ab27772f3239e52a1 rdf:first sg:person.0672012532.47
160 rdf:rest N8285e8b7c5264f5b84a4b64bfe8b5427
161 N8285e8b7c5264f5b84a4b64bfe8b5427 rdf:first sg:person.015261314145.76
162 rdf:rest Neeb84ff2489f4eb8b52138f1fa17a705
163 Nb3e48d6027ca40dabf3905b28753102f rdf:first sg:person.01061071721.02
164 rdf:rest N150ac2f7df494316be3b0f32103436d8
165 Nc95e436114b743d7a8e35d15f7c3e02f rdf:first sg:person.01111626120.53
166 rdf:rest N12bfca4c2030405aadccc0f268cd8e87
167 Nd0fa96b5ae364aef8508d3adbe8465f0 rdf:first sg:person.01334660037.45
168 rdf:rest Nb3e48d6027ca40dabf3905b28753102f
169 Neeb84ff2489f4eb8b52138f1fa17a705 rdf:first sg:person.01053610402.50
170 rdf:rest Nc95e436114b743d7a8e35d15f7c3e02f
171 Nf9bed29527ee42449ad36ba8e9bfc587 rdf:first sg:person.01157340154.85
172 rdf:rest N76d628c9292f470ab27772f3239e52a1
173 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
174 schema:name Biological Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
177 schema:name Biochemistry and Cell Biology
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
180 schema:name Microbiology
181 rdf:type schema:DefinedTerm
182 sg:grant.2437868 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-014-0747-6
183 rdf:type schema:MonetaryGrant
184 sg:grant.2675012 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-014-0747-6
185 rdf:type schema:MonetaryGrant
186 sg:grant.4320928 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-014-0747-6
187 rdf:type schema:MonetaryGrant
188 sg:journal.1036887 schema:issn 1573-3882
189 1573-3890
190 schema:name Metabolomics
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.01053610402.50 schema:affiliation grid-institutes:grid.135519.a
194 schema:familyName Giannone
195 schema:givenName Richard J.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053610402.50
197 rdf:type schema:Person
198 sg:person.01061071721.02 schema:affiliation grid-institutes:grid.41891.35
199 schema:familyName Copié
200 schema:givenName Valerie
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061071721.02
202 rdf:type schema:Person
203 sg:person.01111626120.53 schema:affiliation grid-institutes:grid.411461.7
204 schema:familyName Wurch
205 schema:givenName Louie
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111626120.53
207 rdf:type schema:Person
208 sg:person.01157340154.85 schema:affiliation grid-institutes:grid.41891.35
209 schema:familyName Hamerly
210 schema:givenName Timothy
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157340154.85
212 rdf:type schema:Person
213 sg:person.01166232543.33 schema:affiliation grid-institutes:grid.41891.35
214 schema:familyName Bothner
215 schema:givenName Brian
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166232543.33
217 rdf:type schema:Person
218 sg:person.01233336244.31 schema:affiliation grid-institutes:grid.135519.a
219 schema:familyName Hettich
220 schema:givenName Robert L.
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233336244.31
222 rdf:type schema:Person
223 sg:person.01334660037.45 schema:affiliation grid-institutes:grid.411461.7
224 schema:familyName Podar
225 schema:givenName Mircea
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334660037.45
227 rdf:type schema:Person
228 sg:person.015261314145.76 schema:affiliation grid-institutes:grid.41891.35
229 schema:familyName Tigges
230 schema:givenName Michelle
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261314145.76
232 rdf:type schema:Person
233 sg:person.0672012532.47 schema:affiliation grid-institutes:grid.41891.35
234 schema:familyName Tripet
235 schema:givenName Brian P.
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672012532.47
237 rdf:type schema:Person
238 sg:pub.10.1007/s00203-004-0725-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019445933
239 https://doi.org/10.1007/s00203-004-0725-x
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/s00203-008-0402-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013570847
242 https://doi.org/10.1007/s00203-008-0402-6
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s10482-012-9748-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008276135
245 https://doi.org/10.1007/s10482-012-9748-5
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/417063a schema:sameAs https://app.dimensions.ai/details/publication/pub.1012444409
248 https://doi.org/10.1038/417063a
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ismej.2014.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017428659
251 https://doi.org/10.1038/ismej.2014.112
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2105-13-243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028394359
254 https://doi.org/10.1186/1471-2105-13-243
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/2045-3701-2-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032412581
257 https://doi.org/10.1186/2045-3701-2-29
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/gb-2008-9-11-r158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051170330
260 https://doi.org/10.1186/gb-2008-9-11-r158
261 rdf:type schema:CreativeWork
262 grid-institutes:grid.135519.a schema:alternateName Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
263 schema:name Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
264 rdf:type schema:Organization
265 grid-institutes:grid.411461.7 schema:alternateName Department of Microbiology, University of Tennessee, 37996, Knoxville, TN, USA
266 schema:name Department of Microbiology, University of Tennessee, 37996, Knoxville, TN, USA
267 Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
268 rdf:type schema:Organization
269 grid-institutes:grid.41891.35 schema:alternateName Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA
270 Thermal Biology Institute, Montana State University, 59717, Bozeman, MT, USA
271 schema:name Department of Chemistry and Biochemistry, Montana State University, CBB 103, 59717, Bozeman, MT, USA
272 Thermal Biology Institute, Montana State University, 59717, Bozeman, MT, USA
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...