An NMR metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10-11

AUTHORS

Rosa Vázquez-Fresno, Rafael Llorach, Mireia Urpi-Sarda, Olha Khymenets, Mònica Bulló, Dolores Corella, Montserrat Fitó, Miguel Angel Martínez-González, Ramon Estruch, Cristina Andres-Lacueva

ABSTRACT

The development of robust biomarkers of consumption would improve the classification of participants with regard to their dietary exposure. In addition, validation of them in free-living individuals remains an important challenge. The aim of this study is to assess wine intake biomarkers using an NMR metabolomic approach to measure the utility of these biomarkers in a wine interventional study (WIS, n = 56) and also to evaluate them in a free-living individuals (PREDIMED study, n = 91). Nine metabolites showed a significantly higher presence in urinary excretion in WIS after wine intake: five food metabolome metabolites (tartrate, ethyl glucuronide [EtG], 2,3-butanediol, mannitol, and ethanol); one related to the endogenous response to wine exposure (3-methyl-2-oxovalerate) and three unidentified compounds. Receiver operating characteristic (ROC) curve for each single metabolite were evaluated and exhibited areas under the curves (AUC) between 67.4 and 86.3 % when they were evaluated individually. Then, a logistic regression model was fitted to generate a combined-biomarkers model using these metabolites. The model generated which included tartrate-EtG, showed an AUC of 90.7 % in WIS. Similarly, the AUC in the PREDIMED study was 92.4 %. Results showed that a model combining tartrate-EtG is more useful for evaluating exposure to wine than single biomarkers, both in interventional studies and epidemiological data. To our knowledge, this is the first time that a combined-biomarker model using an NMR platform in wine biomarkers’ research has been generated and reproduced in a free-living population. More... »

PAGES

797-806

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-014-0735-x

DOI

http://dx.doi.org/10.1007/s11306-014-0735-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045526430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, Torribera Campus, Pharmacy Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain", 
            "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "V\u00e1zquez-Fresno", 
        "givenName": "Rosa", 
        "id": "sg:person.01050674413.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050674413.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, Torribera Campus, Pharmacy Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain", 
            "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Llorach", 
        "givenName": "Rafael", 
        "id": "sg:person.01233411245.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233411245.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, Torribera Campus, Pharmacy Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain", 
            "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Urpi-Sarda", 
        "givenName": "Mireia", 
        "id": "sg:person.01361231365.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361231365.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, Torribera Campus, Pharmacy Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain", 
            "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khymenets", 
        "givenName": "Olha", 
        "id": "sg:person.0650613602.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650613602.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIBER Fisiopatologia de la Obesidad y Nutrici\u00f3n (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.413448.e", 
          "name": [
            "Human Nutrition Unit, Biochemistry and Biotechnology Department and Hospital Universitari de Sant Joan de Reus, Institut d\u2018Investigaci\u00f3 Sanit\u00e0ria Pere Virgili, Universitat Rovira I Virgili, Reus, Spain", 
            "CIBER Fisiopatologia de la Obesidad y Nutrici\u00f3n (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bull\u00f3", 
        "givenName": "M\u00f2nica", 
        "id": "sg:person.01201765723.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201765723.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "CIBER Fisiopatologia de la Obesidad y Nutrici\u00f3n (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain", 
            "Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corella", 
        "givenName": "Dolores", 
        "id": "sg:person.01317275120.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317275120.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Epidemiology Unit, Municipal Institute for Medical Research (IMIM), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.416319.8", 
          "name": [
            "CIBER Fisiopatologia de la Obesidad y Nutrici\u00f3n (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain", 
            "Cardiovascular Epidemiology Unit, Municipal Institute for Medical Research (IMIM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fit\u00f3", 
        "givenName": "Montserrat", 
        "id": "sg:person.01276601177.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276601177.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5924.a", 
          "name": [
            "CIBER Fisiopatologia de la Obesidad y Nutrici\u00f3n (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain", 
            "Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez-Gonz\u00e1lez", 
        "givenName": "Miguel Angel", 
        "id": "sg:person.01343147055.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343147055.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Hospital Clinic, Institut d\u2019Investigacions Biom\u00e8diques August Pi Sunyer (IDIBAPS), Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CIBER Fisiopatologia de la Obesidad y Nutrici\u00f3n (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain", 
            "Department of Internal Medicine, Hospital Clinic, Institut d\u2019Investigacions Biom\u00e8diques August Pi Sunyer (IDIBAPS), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Estruch", 
        "givenName": "Ramon", 
        "id": "sg:person.0706200563.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706200563.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, Torribera Campus, Pharmacy Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain", 
            "INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andres-Lacueva", 
        "givenName": "Cristina", 
        "id": "sg:person.0641466365.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641466365.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00216-009-2676-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052308669", 
          "https://doi.org/10.1007/s00216-009-2676-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-014-0682-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022992539", 
          "https://doi.org/10.1007/s11306-014-0682-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2011.319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027556089", 
          "https://doi.org/10.1038/nprot.2011.319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-012-0482-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050217969", 
          "https://doi.org/10.1007/s11306-012-0482-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2003.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046341700", 
          "https://doi.org/10.1016/j.jasms.2003.10.010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-012-0469-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014293651", 
          "https://doi.org/10.1007/s11306-012-0469-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10-11", 
    "datePublishedReg": "2014-10-11", 
    "description": "The development of robust biomarkers of consumption would improve the classification of participants with regard to their dietary exposure. In addition, validation of them in free-living individuals remains an important challenge. The aim of this study is to assess wine intake biomarkers using an NMR metabolomic approach to measure the utility of these biomarkers in a wine interventional study (WIS, n\u00a0=\u00a056) and also to evaluate them in a free-living individuals (PREDIMED study, n\u00a0=\u00a091). Nine metabolites showed a significantly higher presence in urinary excretion in WIS after wine intake: five food metabolome metabolites (tartrate, ethyl glucuronide [EtG], 2,3-butanediol, mannitol, and ethanol); one related to the endogenous response to wine exposure (3-methyl-2-oxovalerate) and three unidentified compounds. Receiver operating characteristic (ROC) curve for each single metabolite were evaluated and exhibited areas under the curves (AUC) between 67.4 and 86.3\u00a0% when they were evaluated individually. Then, a logistic regression model was fitted to generate a combined-biomarkers model using these metabolites. The model generated which included tartrate-EtG, showed an AUC of 90.7\u00a0% in WIS. Similarly, the AUC in the PREDIMED study was 92.4\u00a0%. Results showed that a model combining tartrate-EtG is more useful for evaluating exposure to wine than single biomarkers, both in interventional studies and epidemiological data. To our knowledge, this is the first time that a combined-biomarker model using an NMR platform in wine biomarkers\u2019 research has been generated and reproduced in a free-living population.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11306-014-0735-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "free-living individuals", 
      "PREDIMED study", 
      "interventional studies", 
      "logistic regression models", 
      "NMR metabolomics approach", 
      "interventional trials", 
      "metabolomics approach", 
      "wine intake", 
      "urinary excretion", 
      "epidemiological data", 
      "free-living individuals", 
      "classification of participants", 
      "single biomarker", 
      "dietary exposure", 
      "robust biomarkers", 
      "wine exposure", 
      "biomarkers", 
      "characteristic curve", 
      "endogenous response", 
      "AUC", 
      "regression models", 
      "exposure", 
      "single metabolite", 
      "metabolites", 
      "individuals", 
      "study", 
      "excretion", 
      "higher presence", 
      "intake", 
      "trials", 
      "participants", 
      "aim", 
      "population", 
      "response", 
      "curves", 
      "unidentified compounds", 
      "first time", 
      "regard", 
      "utility", 
      "validation", 
      "presence", 
      "addition", 
      "development", 
      "data", 
      "classification", 
      "model", 
      "consumption", 
      "time", 
      "knowledge", 
      "area", 
      "results", 
      "important challenge", 
      "challenges", 
      "wine", 
      "WIS", 
      "NMR platform", 
      "approach", 
      "receiver", 
      "research", 
      "compounds", 
      "platform", 
      "wine interventional study", 
      "food metabolome metabolites", 
      "metabolome metabolites", 
      "combined-biomarkers model", 
      "wine biomarkers", 
      "wine interventional trial"
    ], 
    "name": "An NMR metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study", 
    "pagination": "797-806", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045526430"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-014-0735-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-014-0735-x", 
      "https://app.dimensions.ai/details/publication/pub.1045526430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_649.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11306-014-0735-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0735-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0735-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0735-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0735-x'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      22 PREDICATES      98 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-014-0735-x schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Ne457b8896328448ca176266f3ea8cf45
4 schema:citation sg:pub.10.1007/s00216-009-2676-1
5 sg:pub.10.1007/s11306-012-0469-6
6 sg:pub.10.1007/s11306-012-0482-9
7 sg:pub.10.1007/s11306-014-0682-6
8 sg:pub.10.1016/j.jasms.2003.10.010
9 sg:pub.10.1038/nprot.2011.319
10 sg:pub.10.1186/1471-2105-12-77
11 schema:datePublished 2014-10-11
12 schema:datePublishedReg 2014-10-11
13 schema:description The development of robust biomarkers of consumption would improve the classification of participants with regard to their dietary exposure. In addition, validation of them in free-living individuals remains an important challenge. The aim of this study is to assess wine intake biomarkers using an NMR metabolomic approach to measure the utility of these biomarkers in a wine interventional study (WIS, n = 56) and also to evaluate them in a free-living individuals (PREDIMED study, n = 91). Nine metabolites showed a significantly higher presence in urinary excretion in WIS after wine intake: five food metabolome metabolites (tartrate, ethyl glucuronide [EtG], 2,3-butanediol, mannitol, and ethanol); one related to the endogenous response to wine exposure (3-methyl-2-oxovalerate) and three unidentified compounds. Receiver operating characteristic (ROC) curve for each single metabolite were evaluated and exhibited areas under the curves (AUC) between 67.4 and 86.3 % when they were evaluated individually. Then, a logistic regression model was fitted to generate a combined-biomarkers model using these metabolites. The model generated which included tartrate-EtG, showed an AUC of 90.7 % in WIS. Similarly, the AUC in the PREDIMED study was 92.4 %. Results showed that a model combining tartrate-EtG is more useful for evaluating exposure to wine than single biomarkers, both in interventional studies and epidemiological data. To our knowledge, this is the first time that a combined-biomarker model using an NMR platform in wine biomarkers’ research has been generated and reproduced in a free-living population.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N0952bff531d045b8bf1ca88396fb1b5f
18 N1c9cb7907cfc4b5e8378a3098f0437bd
19 sg:journal.1036887
20 schema:keywords AUC
21 NMR metabolomics approach
22 NMR platform
23 PREDIMED study
24 WIS
25 addition
26 aim
27 approach
28 area
29 biomarkers
30 challenges
31 characteristic curve
32 classification
33 classification of participants
34 combined-biomarkers model
35 compounds
36 consumption
37 curves
38 data
39 development
40 dietary exposure
41 endogenous response
42 epidemiological data
43 excretion
44 exposure
45 first time
46 food metabolome metabolites
47 free-living individuals
48 higher presence
49 important challenge
50 individuals
51 intake
52 interventional studies
53 interventional trials
54 knowledge
55 logistic regression models
56 metabolites
57 metabolome metabolites
58 metabolomics approach
59 model
60 participants
61 platform
62 population
63 presence
64 receiver
65 regard
66 regression models
67 research
68 response
69 results
70 robust biomarkers
71 single biomarker
72 single metabolite
73 study
74 time
75 trials
76 unidentified compounds
77 urinary excretion
78 utility
79 validation
80 wine
81 wine biomarkers
82 wine exposure
83 wine intake
84 wine interventional study
85 wine interventional trial
86 schema:name An NMR metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study
87 schema:pagination 797-806
88 schema:productId N20bf1f345a414749a11fc0f60cacf141
89 N7d04afdc05e94802982bdd69e7965a86
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045526430
91 https://doi.org/10.1007/s11306-014-0735-x
92 schema:sdDatePublished 2022-01-01T18:34
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N2db83eb2c9384a53bb95b3837019df86
95 schema:url https://doi.org/10.1007/s11306-014-0735-x
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N0952bff531d045b8bf1ca88396fb1b5f schema:issueNumber 4
100 rdf:type schema:PublicationIssue
101 N1c9cb7907cfc4b5e8378a3098f0437bd schema:volumeNumber 11
102 rdf:type schema:PublicationVolume
103 N20bf1f345a414749a11fc0f60cacf141 schema:name doi
104 schema:value 10.1007/s11306-014-0735-x
105 rdf:type schema:PropertyValue
106 N2db83eb2c9384a53bb95b3837019df86 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N58c5d07b3a724e5894fcbf5a295c4d8e rdf:first sg:person.01276601177.82
109 rdf:rest N82d5a38e9ef044a5bf3f65de5e6fc6e0
110 N5e172ef7f0684f3db016c83bb3abb27b rdf:first sg:person.0706200563.43
111 rdf:rest Ncc095a781917453a9a5e487a0c01bdbf
112 N634931b4e7b446dfa31c5183cfa9efa9 rdf:first sg:person.01201765723.85
113 rdf:rest Nc285c042f0014b7c9e24c39b35e48a5e
114 N7d04afdc05e94802982bdd69e7965a86 schema:name dimensions_id
115 schema:value pub.1045526430
116 rdf:type schema:PropertyValue
117 N7e66bea36f994f77b664077c573d568d rdf:first sg:person.01233411245.08
118 rdf:rest Nbbcff45f58e940f8bd355834d9caba04
119 N82d5a38e9ef044a5bf3f65de5e6fc6e0 rdf:first sg:person.01343147055.50
120 rdf:rest N5e172ef7f0684f3db016c83bb3abb27b
121 N9f4f62a7a93c449db8ed6243daf881ce rdf:first sg:person.0650613602.48
122 rdf:rest N634931b4e7b446dfa31c5183cfa9efa9
123 Nbbcff45f58e940f8bd355834d9caba04 rdf:first sg:person.01361231365.75
124 rdf:rest N9f4f62a7a93c449db8ed6243daf881ce
125 Nc285c042f0014b7c9e24c39b35e48a5e rdf:first sg:person.01317275120.73
126 rdf:rest N58c5d07b3a724e5894fcbf5a295c4d8e
127 Ncc095a781917453a9a5e487a0c01bdbf rdf:first sg:person.0641466365.18
128 rdf:rest rdf:nil
129 Ne457b8896328448ca176266f3ea8cf45 rdf:first sg:person.01050674413.31
130 rdf:rest N7e66bea36f994f77b664077c573d568d
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
135 schema:name Public Health and Health Services
136 rdf:type schema:DefinedTerm
137 sg:journal.1036887 schema:issn 1573-3882
138 1573-3890
139 schema:name Metabolomics
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01050674413.31 schema:affiliation grid-institutes:None
143 schema:familyName Vázquez-Fresno
144 schema:givenName Rosa
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050674413.31
146 rdf:type schema:Person
147 sg:person.01201765723.85 schema:affiliation grid-institutes:grid.413448.e
148 schema:familyName Bulló
149 schema:givenName Mònica
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201765723.85
151 rdf:type schema:Person
152 sg:person.01233411245.08 schema:affiliation grid-institutes:None
153 schema:familyName Llorach
154 schema:givenName Rafael
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233411245.08
156 rdf:type schema:Person
157 sg:person.01276601177.82 schema:affiliation grid-institutes:grid.416319.8
158 schema:familyName Fitó
159 schema:givenName Montserrat
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276601177.82
161 rdf:type schema:Person
162 sg:person.01317275120.73 schema:affiliation grid-institutes:grid.5338.d
163 schema:familyName Corella
164 schema:givenName Dolores
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317275120.73
166 rdf:type schema:Person
167 sg:person.01343147055.50 schema:affiliation grid-institutes:grid.5924.a
168 schema:familyName Martínez-González
169 schema:givenName Miguel Angel
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343147055.50
171 rdf:type schema:Person
172 sg:person.01361231365.75 schema:affiliation grid-institutes:None
173 schema:familyName Urpi-Sarda
174 schema:givenName Mireia
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361231365.75
176 rdf:type schema:Person
177 sg:person.0641466365.18 schema:affiliation grid-institutes:None
178 schema:familyName Andres-Lacueva
179 schema:givenName Cristina
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641466365.18
181 rdf:type schema:Person
182 sg:person.0650613602.48 schema:affiliation grid-institutes:None
183 schema:familyName Khymenets
184 schema:givenName Olha
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650613602.48
186 rdf:type schema:Person
187 sg:person.0706200563.43 schema:affiliation grid-institutes:None
188 schema:familyName Estruch
189 schema:givenName Ramon
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706200563.43
191 rdf:type schema:Person
192 sg:pub.10.1007/s00216-009-2676-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052308669
193 https://doi.org/10.1007/s00216-009-2676-1
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s11306-012-0469-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014293651
196 https://doi.org/10.1007/s11306-012-0469-6
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s11306-012-0482-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050217969
199 https://doi.org/10.1007/s11306-012-0482-9
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s11306-014-0682-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022992539
202 https://doi.org/10.1007/s11306-014-0682-6
203 rdf:type schema:CreativeWork
204 sg:pub.10.1016/j.jasms.2003.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046341700
205 https://doi.org/10.1016/j.jasms.2003.10.010
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nprot.2011.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027556089
208 https://doi.org/10.1038/nprot.2011.319
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/1471-2105-12-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014582441
211 https://doi.org/10.1186/1471-2105-12-77
212 rdf:type schema:CreativeWork
213 grid-institutes:None schema:alternateName Department of Internal Medicine, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
214 INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain
215 schema:name Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, Torribera Campus, Pharmacy Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
216 CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
217 Department of Internal Medicine, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
218 INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of Science and Innovation, Barcelona, Spain
219 rdf:type schema:Organization
220 grid-institutes:grid.413448.e schema:alternateName CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
221 schema:name CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
222 Human Nutrition Unit, Biochemistry and Biotechnology Department and Hospital Universitari de Sant Joan de Reus, Institut d‘Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
223 rdf:type schema:Organization
224 grid-institutes:grid.416319.8 schema:alternateName Cardiovascular Epidemiology Unit, Municipal Institute for Medical Research (IMIM), Barcelona, Spain
225 schema:name CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
226 Cardiovascular Epidemiology Unit, Municipal Institute for Medical Research (IMIM), Barcelona, Spain
227 rdf:type schema:Organization
228 grid-institutes:grid.5338.d schema:alternateName Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain
229 schema:name CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
230 Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain
231 rdf:type schema:Organization
232 grid-institutes:grid.5924.a schema:alternateName Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
233 schema:name CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
234 Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...