Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05-22

AUTHORS

Thomas Weissgerber, Mutsumi Watanabe, Rainer Hoefgen, Christiane Dahl

ABSTRACT

Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to changes of nutritional conditions have been performed and these focused on gene expression and protein levels. Here, we provide a study on metabolite composition and relate it with transcriptional and proteomic profiling data to provide a more comprehensive insight on the systems level adjustment to available nutrients. We identified 131 individual metabolites and compared availability and concentration under four different growth conditions (sulfide, thiosulfate, elemental sulfur, and malate) and on sulfide for a ΔdsrJ mutant strain. During growth on malate, cysteine was identified to be the least abundant amino acid. Concentrations of the metabolite classes “amino acids” and “organic acids” (i.e., pyruvate and its derivatives) were higher on malate than on reduced sulfur compounds by at least 20 and 50 %, respectively. Similar observations were made for metabolites assigned to anabolism of glucose. Growth on sulfur compounds led to enhanced concentrations of sulfur containing metabolites, while other cell constituents remained unaffected or decreased. Incapability of sulfur globule oxidation of the mutant strain was reflected by a low energy level of the cell and consequently reduced levels of amino acids (40 %) and sugars (65 %). More... »

PAGES

1094-1112

References to SciGraph publications

  • 2000-03. Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway* in MOLECULAR BIOLOGY REPORTS
  • 2009-06-28. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli in NATURE CHEMICAL BIOLOGY
  • 2011-11. Complete genome sequence of Allochromatium vinosum DSM 180T in ENVIRONMENTAL MICROBIOME
  • 2007. Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles in METABOLOMICS
  • 1980-08. Malic enzyme of Chromatium vinosum in ARCHIVES OF MICROBIOLOGY
  • 2006-06-27. Gas chromatography mass spectrometry–based metabolite profiling in plants in NATURE PROTOCOLS
  • 1980-03. Survival of Chromatium vinosum at low light intensities in ARCHIVES OF MICROBIOLOGY
  • 1975-01. Characterization of Rhodopseudomonas capsulata in ARCHIVES OF MICROBIOLOGY
  • 1998-06. Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum in ARCHIVES OF MICROBIOLOGY
  • 2010-02-16. Decision tree supported substructure prediction of metabolites from GC-MS profiles in METABOLOMICS
  • 2006-08-22. Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes in ARCHIVES OF MICROBIOLOGY
  • 2006-01-01. Bacterial Sulfur Globules: Occurrence, Structure and Metabolism in INCLUSIONS IN PROKARYOTES
  • 1998-04. Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum in ARCHIVES OF MICROBIOLOGY
  • 1976-08. Cysteine and S-sulfocysteine biosynthesis in phototrophic bacteria in ARCHIVES OF MICROBIOLOGY
  • 2012-05-18. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli in MICROBIAL CELL FACTORIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11306-014-0649-7

    DOI

    http://dx.doi.org/10.1007/s11306-014-0649-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033023197

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25374486


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Institut f\u00fcr Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weissgerber", 
            "givenName": "Thomas", 
            "id": "sg:person.01130261252.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130261252.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Science Park Potsdam \u2013 Golm, 14424, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Science Park Potsdam \u2013 Golm, 14424, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Mutsumi", 
            "id": "sg:person.01103653720.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103653720.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Science Park Potsdam \u2013 Golm, 14424, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Science Park Potsdam \u2013 Golm, 14424, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoefgen", 
            "givenName": "Rainer", 
            "id": "sg:person.01030207204.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030207204.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Institut f\u00fcr Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dahl", 
            "givenName": "Christiane", 
            "id": "sg:person.01051150611.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051150611.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nprot.2006.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036460337", 
              "https://doi.org/10.1038/nprot.2006.59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00203-006-0156-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005391892", 
              "https://doi.org/10.1007/s00203-006-0156-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-33774-1_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017068080", 
              "https://doi.org/10.1007/3-540-33774-1_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-11-62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053360647", 
              "https://doi.org/10.1186/1475-2859-11-62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002030050615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022667871", 
              "https://doi.org/10.1007/s002030050615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00425119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011615496", 
              "https://doi.org/10.1007/bf00425119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-59745-244-1_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044052761", 
              "https://doi.org/10.1007/978-1-59745-244-1_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00403207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048314395", 
              "https://doi.org/10.1007/bf00403207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00414350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009604261", 
              "https://doi.org/10.1007/bf00414350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007058421714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044737244", 
              "https://doi.org/10.1023/a:1007058421714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00447139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038516597", 
              "https://doi.org/10.1007/bf00447139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017010114", 
              "https://doi.org/10.1038/nchembio.186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-010-0198-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027746322", 
              "https://doi.org/10.1007/s11306-010-0198-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002030050594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038293714", 
              "https://doi.org/10.1007/s002030050594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/sigs.2335270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007306019", 
              "https://doi.org/10.4056/sigs.2335270"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05-22", 
        "datePublishedReg": "2014-05-22", 
        "description": "Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to changes of nutritional conditions have been performed and these focused on gene expression and protein levels. Here, we provide a study on metabolite composition and relate it with transcriptional and proteomic profiling data to provide a more comprehensive insight on the systems level adjustment to available nutrients. We identified 131 individual metabolites and compared availability and concentration under four different growth conditions (sulfide, thiosulfate, elemental sulfur, and malate) and on sulfide for a \u0394dsrJ mutant strain. During growth on malate, cysteine was identified to be the least abundant amino acid. Concentrations of the metabolite classes \u201camino acids\u201d and \u201corganic acids\u201d (i.e., pyruvate and its derivatives) were higher on malate than on reduced sulfur compounds by at least 20 and 50\u00a0%, respectively. Similar observations were made for metabolites assigned to anabolism of glucose. Growth on sulfur compounds led to enhanced concentrations of sulfur containing metabolites, while other cell constituents remained unaffected or decreased. Incapability of sulfur globule oxidation of the mutant strain was reflected by a low energy level of the cell and consequently reduced levels of amino acids (40\u00a0%) and sugars (65\u00a0%).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11306-014-0649-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1036887", 
            "issn": [
              "1573-3882", 
              "1573-3890"
            ], 
            "name": "Metabolomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "Allochromatium vinosum", 
          "amino acids", 
          "mutant strain", 
          "phototrophic purple sulfur bacteria", 
          "purple sulfur bacterium Allochromatium vinosum", 
          "least abundant amino acid", 
          "purple sulfur bacteria", 
          "physiology of bacteria", 
          "proteomic profiling data", 
          "system-level adjustments", 
          "different growth conditions", 
          "abundant amino acid", 
          "sulfur bacteria", 
          "environmental fluctuations", 
          "gene expression", 
          "molecular networks", 
          "reduced sulfur compounds", 
          "profiling data", 
          "available nutrients", 
          "nutritional conditions", 
          "metabolite composition", 
          "cell constituents", 
          "protein levels", 
          "growth conditions", 
          "carbon source", 
          "important nutrients", 
          "sulfur compounds", 
          "vinosum", 
          "metabolite classes", 
          "global analysis", 
          "bacteria", 
          "malate", 
          "comprehensive insight", 
          "metabolomic profiling", 
          "nutrients", 
          "organic acids", 
          "metabolites", 
          "growth", 
          "acid", 
          "organisms", 
          "rapid adjustment", 
          "strains", 
          "individual metabolites", 
          "cysteine", 
          "profiling", 
          "physiology", 
          "anabolism", 
          "expression", 
          "cells", 
          "Similar observations", 
          "levels", 
          "sugars", 
          "enhanced concentrations", 
          "compounds", 
          "steep gradients", 
          "insights", 
          "availability", 
          "changes", 
          "concentration", 
          "energy levels", 
          "gradient", 
          "composition", 
          "response", 
          "conditions", 
          "glucose", 
          "constituents", 
          "environment", 
          "light", 
          "low energy levels", 
          "oxidation", 
          "analysis", 
          "sulfur", 
          "sulfide", 
          "oxygen", 
          "class", 
          "source", 
          "study", 
          "observations", 
          "fluctuations", 
          "data", 
          "incapability", 
          "network", 
          "level adjustment", 
          "adjustment"
        ], 
        "name": "Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate", 
        "pagination": "1094-1112", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033023197"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11306-014-0649-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25374486"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11306-014-0649-7", 
          "https://app.dimensions.ai/details/publication/pub.1033023197"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_631.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11306-014-0649-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0649-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0649-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0649-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-014-0649-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    229 TRIPLES      21 PREDICATES      124 URIs      101 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11306-014-0649-7 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N31c459078edf45e8b090bbf30def61dc
    4 schema:citation sg:pub.10.1007/3-540-33774-1_2
    5 sg:pub.10.1007/978-1-59745-244-1_2
    6 sg:pub.10.1007/bf00403207
    7 sg:pub.10.1007/bf00414350
    8 sg:pub.10.1007/bf00425119
    9 sg:pub.10.1007/bf00447139
    10 sg:pub.10.1007/s00203-006-0156-y
    11 sg:pub.10.1007/s002030050594
    12 sg:pub.10.1007/s002030050615
    13 sg:pub.10.1007/s11306-010-0198-7
    14 sg:pub.10.1023/a:1007058421714
    15 sg:pub.10.1038/nchembio.186
    16 sg:pub.10.1038/nprot.2006.59
    17 sg:pub.10.1186/1475-2859-11-62
    18 sg:pub.10.4056/sigs.2335270
    19 schema:datePublished 2014-05-22
    20 schema:datePublishedReg 2014-05-22
    21 schema:description Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to changes of nutritional conditions have been performed and these focused on gene expression and protein levels. Here, we provide a study on metabolite composition and relate it with transcriptional and proteomic profiling data to provide a more comprehensive insight on the systems level adjustment to available nutrients. We identified 131 individual metabolites and compared availability and concentration under four different growth conditions (sulfide, thiosulfate, elemental sulfur, and malate) and on sulfide for a ΔdsrJ mutant strain. During growth on malate, cysteine was identified to be the least abundant amino acid. Concentrations of the metabolite classes “amino acids” and “organic acids” (i.e., pyruvate and its derivatives) were higher on malate than on reduced sulfur compounds by at least 20 and 50 %, respectively. Similar observations were made for metabolites assigned to anabolism of glucose. Growth on sulfur compounds led to enhanced concentrations of sulfur containing metabolites, while other cell constituents remained unaffected or decreased. Incapability of sulfur globule oxidation of the mutant strain was reflected by a low energy level of the cell and consequently reduced levels of amino acids (40 %) and sugars (65 %).
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N16b29e3732074c98bea0beebf60412d4
    25 N2067c3119d9a4153ae36e1fddba00fbc
    26 sg:journal.1036887
    27 schema:keywords Allochromatium vinosum
    28 Similar observations
    29 abundant amino acid
    30 acid
    31 adjustment
    32 amino acids
    33 anabolism
    34 analysis
    35 availability
    36 available nutrients
    37 bacteria
    38 carbon source
    39 cell constituents
    40 cells
    41 changes
    42 class
    43 composition
    44 compounds
    45 comprehensive insight
    46 concentration
    47 conditions
    48 constituents
    49 cysteine
    50 data
    51 different growth conditions
    52 energy levels
    53 enhanced concentrations
    54 environment
    55 environmental fluctuations
    56 expression
    57 fluctuations
    58 gene expression
    59 global analysis
    60 glucose
    61 gradient
    62 growth
    63 growth conditions
    64 important nutrients
    65 incapability
    66 individual metabolites
    67 insights
    68 least abundant amino acid
    69 level adjustment
    70 levels
    71 light
    72 low energy levels
    73 malate
    74 metabolite classes
    75 metabolite composition
    76 metabolites
    77 metabolomic profiling
    78 molecular networks
    79 mutant strain
    80 network
    81 nutrients
    82 nutritional conditions
    83 observations
    84 organic acids
    85 organisms
    86 oxidation
    87 oxygen
    88 phototrophic purple sulfur bacteria
    89 physiology
    90 physiology of bacteria
    91 profiling
    92 profiling data
    93 protein levels
    94 proteomic profiling data
    95 purple sulfur bacteria
    96 purple sulfur bacterium Allochromatium vinosum
    97 rapid adjustment
    98 reduced sulfur compounds
    99 response
    100 source
    101 steep gradients
    102 strains
    103 study
    104 sugars
    105 sulfide
    106 sulfur
    107 sulfur bacteria
    108 sulfur compounds
    109 system-level adjustments
    110 vinosum
    111 schema:name Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate
    112 schema:pagination 1094-1112
    113 schema:productId N7ca470a2438f4d02aed5a1ff2d2bde84
    114 N7fbc62fe217a41f2ab74f075cc26ee5d
    115 N83016dc9a44743bab919aaed343aea21
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033023197
    117 https://doi.org/10.1007/s11306-014-0649-7
    118 schema:sdDatePublished 2022-08-04T17:01
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N628dfc5e62a54ec9995813b1f43777d8
    121 schema:url https://doi.org/10.1007/s11306-014-0649-7
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N0cd571cc91f8444488c0ba48330473d1 rdf:first sg:person.01103653720.68
    126 rdf:rest N62574cd061824125891039406a6f2ea2
    127 N16b29e3732074c98bea0beebf60412d4 schema:volumeNumber 10
    128 rdf:type schema:PublicationVolume
    129 N2067c3119d9a4153ae36e1fddba00fbc schema:issueNumber 6
    130 rdf:type schema:PublicationIssue
    131 N31c459078edf45e8b090bbf30def61dc rdf:first sg:person.01130261252.46
    132 rdf:rest N0cd571cc91f8444488c0ba48330473d1
    133 N62574cd061824125891039406a6f2ea2 rdf:first sg:person.01030207204.90
    134 rdf:rest Ncb4f026ac2794fa38a9a205686b8e305
    135 N628dfc5e62a54ec9995813b1f43777d8 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N7ca470a2438f4d02aed5a1ff2d2bde84 schema:name dimensions_id
    138 schema:value pub.1033023197
    139 rdf:type schema:PropertyValue
    140 N7fbc62fe217a41f2ab74f075cc26ee5d schema:name doi
    141 schema:value 10.1007/s11306-014-0649-7
    142 rdf:type schema:PropertyValue
    143 N83016dc9a44743bab919aaed343aea21 schema:name pubmed_id
    144 schema:value 25374486
    145 rdf:type schema:PropertyValue
    146 Ncb4f026ac2794fa38a9a205686b8e305 rdf:first sg:person.01051150611.71
    147 rdf:rest rdf:nil
    148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Biological Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Biochemistry and Cell Biology
    153 rdf:type schema:DefinedTerm
    154 sg:journal.1036887 schema:issn 1573-3882
    155 1573-3890
    156 schema:name Metabolomics
    157 schema:publisher Springer Nature
    158 rdf:type schema:Periodical
    159 sg:person.01030207204.90 schema:affiliation grid-institutes:grid.418390.7
    160 schema:familyName Hoefgen
    161 schema:givenName Rainer
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030207204.90
    163 rdf:type schema:Person
    164 sg:person.01051150611.71 schema:affiliation grid-institutes:grid.10388.32
    165 schema:familyName Dahl
    166 schema:givenName Christiane
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051150611.71
    168 rdf:type schema:Person
    169 sg:person.01103653720.68 schema:affiliation grid-institutes:grid.418390.7
    170 schema:familyName Watanabe
    171 schema:givenName Mutsumi
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103653720.68
    173 rdf:type schema:Person
    174 sg:person.01130261252.46 schema:affiliation grid-institutes:grid.10388.32
    175 schema:familyName Weissgerber
    176 schema:givenName Thomas
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130261252.46
    178 rdf:type schema:Person
    179 sg:pub.10.1007/3-540-33774-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017068080
    180 https://doi.org/10.1007/3-540-33774-1_2
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/978-1-59745-244-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044052761
    183 https://doi.org/10.1007/978-1-59745-244-1_2
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/bf00403207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048314395
    186 https://doi.org/10.1007/bf00403207
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/bf00414350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009604261
    189 https://doi.org/10.1007/bf00414350
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf00425119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011615496
    192 https://doi.org/10.1007/bf00425119
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/bf00447139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038516597
    195 https://doi.org/10.1007/bf00447139
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00203-006-0156-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005391892
    198 https://doi.org/10.1007/s00203-006-0156-y
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s002030050594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038293714
    201 https://doi.org/10.1007/s002030050594
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s002030050615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022667871
    204 https://doi.org/10.1007/s002030050615
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s11306-010-0198-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027746322
    207 https://doi.org/10.1007/s11306-010-0198-7
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1023/a:1007058421714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044737244
    210 https://doi.org/10.1023/a:1007058421714
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nchembio.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017010114
    213 https://doi.org/10.1038/nchembio.186
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nprot.2006.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036460337
    216 https://doi.org/10.1038/nprot.2006.59
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1475-2859-11-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053360647
    219 https://doi.org/10.1186/1475-2859-11-62
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.4056/sigs.2335270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007306019
    222 https://doi.org/10.4056/sigs.2335270
    223 rdf:type schema:CreativeWork
    224 grid-institutes:grid.10388.32 schema:alternateName Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
    225 schema:name Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
    226 rdf:type schema:Organization
    227 grid-institutes:grid.418390.7 schema:alternateName Max-Planck-Institut für Molekulare Pflanzenphysiologie, Science Park Potsdam – Golm, 14424, Potsdam, Germany
    228 schema:name Max-Planck-Institut für Molekulare Pflanzenphysiologie, Science Park Potsdam – Golm, 14424, Potsdam, Germany
    229 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...