Ontology type: schema:ScholarlyArticle
2013-03-24
AUTHORSJustin J. J. van der Hooft, Ric C. H. de Vos, Lars Ridder, Jacques Vervoort, Raoul J. Bino
ABSTRACTIdentification of metabolites is a major challenge in biological studies and relies in principle on mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. The increased sensitivity and stability of both NMR and MS systems have made dereplication of complex biological samples feasible. Metabolic databases can be of help in the identification process. Nonetheless, there is still a lack of adequate spectral databases that contain high quality spectra, but new developments in this area will assist in the (semi-)automated identification process in the near future. Here, we discuss new developments for the structural elucidation of low abundant metabolites present in complex sample matrices. We describe how a recently developed combination of high resolution MS multistage fragmentation (MSn) and high resolution one dimensional (1D)-proton (1H)-NMR of liquid chromatography coupled to solid phase extraction (LC–SPE) purified metabolites can circumvent the need for isolating extensive amounts of the compounds of interest to elucidate their structures. The LC–MS–SPE–NMR hardware configuration in conjunction with high quality databases facilitates complete structural elucidation of metabolites even at sub-microgram levels of compound in crude extracts. However, progress is still required to optimally exploit the power of an integrated MS and NMR approach. Especially, there is a need to improve and expand both MSn and NMR spectral databases. Adequate and user-friendly software is required to assist in candidate selection based on the comparison of acquired MS and NMR spectral information with reference data. It is foreseen that these focal points will contribute to a better transfer and exploitation of structural information gained from diverse analytical platforms. More... »
PAGES1009-1018
http://scigraph.springernature.com/pub.10.1007/s11306-013-0519-8
DOIhttp://dx.doi.org/10.1007/s11306-013-0519-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033623025
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Analytical Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Glasgow, Joseph Black building, G12 8QQ, Glasgow, UK",
"id": "http://www.grid.ac/institutes/grid.8756.c",
"name": [
"Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands",
"BU Bioscience, Plant Research International, POB 16, 6700 AA, Wageningen, The Netherlands",
"Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands",
"University of Glasgow, Joseph Black building, G12 8QQ, Glasgow, UK"
],
"type": "Organization"
},
"familyName": "van der Hooft",
"givenName": "Justin J. J.",
"id": "sg:person.014166624614.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166624614.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Biosystems Genomics, POB 98, 6700 AB, Wageningen, The Netherlands",
"id": "http://www.grid.ac/institutes/grid.450019.9",
"name": [
"BU Bioscience, Plant Research International, POB 16, 6700 AA, Wageningen, The Netherlands",
"Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands",
"Centre for Biosystems Genomics, POB 98, 6700 AB, Wageningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "de Vos",
"givenName": "Ric C. H.",
"id": "sg:person.014575024362.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575024362.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Netherlands eScience Center, Amsterdam, The Netherlands",
"id": "http://www.grid.ac/institutes/grid.454309.f",
"name": [
"Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands",
"Netherlands eScience Center, Amsterdam, The Netherlands"
],
"type": "Organization"
},
"familyName": "Ridder",
"givenName": "Lars",
"id": "sg:person.0723152410.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723152410.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands",
"id": "http://www.grid.ac/institutes/grid.450196.f",
"name": [
"Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands",
"Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands"
],
"type": "Organization"
},
"familyName": "Vervoort",
"givenName": "Jacques",
"id": "sg:person.01172021137.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172021137.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700 AR, Wageningen, The Netherlands",
"id": "http://www.grid.ac/institutes/grid.4818.5",
"name": [
"Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700 AR, Wageningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Bino",
"givenName": "Raoul J.",
"id": "sg:person.0667062740.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667062740.44"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11306-007-0082-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023480149",
"https://doi.org/10.1007/s11306-007-0082-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-61779-594-7_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046331447",
"https://doi.org/10.1007/978-1-61779-594-7_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11306-011-0363-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007821767",
"https://doi.org/10.1007/s11306-011-0363-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-8-105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022661426",
"https://doi.org/10.1186/1471-2105-8-105"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11306-011-0347-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016630060",
"https://doi.org/10.1007/s11306-011-0347-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-11-148",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048363616",
"https://doi.org/10.1186/1471-2105-11-148"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12566-010-0015-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026937003",
"https://doi.org/10.1007/s12566-010-0015-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-03-24",
"datePublishedReg": "2013-03-24",
"description": "Identification of metabolites is a major challenge in biological studies and relies in principle on mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. The increased sensitivity and stability of both NMR and MS systems have made dereplication of complex biological samples feasible. Metabolic databases can be of help in the identification process. Nonetheless, there is still a lack of adequate spectral databases that contain high quality spectra, but new developments in this area will assist in the (semi-)automated identification process in the near future. Here, we discuss new developments for the structural elucidation of low abundant metabolites present in complex sample matrices. We describe how a recently developed combination of high resolution MS multistage fragmentation (MSn) and high resolution one dimensional (1D)-proton (1H)-NMR of liquid chromatography coupled to solid phase extraction (LC\u2013SPE) purified metabolites can circumvent the need for isolating extensive amounts of the compounds of interest to elucidate their structures. The LC\u2013MS\u2013SPE\u2013NMR hardware configuration in conjunction with high quality databases facilitates complete structural elucidation of metabolites even at sub-microgram levels of compound in crude extracts. However, progress is still required to optimally exploit the power of an integrated MS and NMR approach. Especially, there is a need to improve and expand both MSn and NMR spectral databases. Adequate and user-friendly software is required to assist in candidate selection based on the comparison of acquired MS and NMR spectral information with reference data. It is foreseen that these focal points will contribute to a better transfer and exploitation of structural information gained from diverse analytical platforms.",
"genre": "article",
"id": "sg:pub.10.1007/s11306-013-0519-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036887",
"issn": [
"1573-3882",
"1573-3890"
],
"name": "Metabolomics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"complex sample matrices",
"structural elucidation",
"mass spectrometry",
"low abundant metabolites",
"sample matrix",
"NMR spectral database",
"complete structural elucidation",
"nuclear magnetic resonance methods",
"complex biological samples",
"solid-phase extraction",
"compounds of interest",
"diverse analytical platforms",
"NMR spectral information",
"spectral database",
"identification of metabolites",
"multistage fragmentation",
"NMR approach",
"magnetic resonance methods",
"phase extraction",
"MS system",
"analytical platform",
"biological samples",
"LC-MS",
"abundant metabolites",
"liquid chromatography",
"levels of compounds",
"NMR",
"structural information",
"biological studies",
"high-quality spectra",
"quality spectra",
"compounds",
"resonance method",
"elucidation",
"crude extract",
"dereplication",
"spectrometry",
"chromatography",
"metabolites",
"resolution one",
"protons",
"new developments",
"stability",
"spectra",
"matrix",
"metabolic databases",
"structure",
"transfer",
"high-resolution one",
"major challenge",
"identification process",
"process",
"extraction",
"extract",
"hardware configuration",
"amount",
"spectral information",
"fragmentation",
"samples",
"configuration",
"near future",
"sensitivity",
"reference data",
"high-quality database",
"better transfer",
"method",
"candidate selection",
"progress",
"user-friendly software",
"platform",
"extensive amount",
"combination",
"interest",
"development",
"conjunction",
"focal point",
"identification",
"power",
"system",
"one",
"comparison",
"exploitation",
"study",
"challenges",
"principles",
"approach",
"software",
"area",
"help",
"relies",
"quality database",
"point",
"information",
"future",
"data",
"need",
"levels",
"selection",
"lack",
"database"
],
"name": "Structural elucidation of low abundant metabolites in complex sample matrices",
"pagination": "1009-1018",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033623025"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11306-013-0519-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11306-013-0519-8",
"https://app.dimensions.ai/details/publication/pub.1033623025"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_599.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11306-013-0519-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-013-0519-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-013-0519-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-013-0519-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-013-0519-8'
This table displays all metadata directly associated to this object as RDF triples.
241 TRIPLES
22 PREDICATES
134 URIs
117 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11306-013-0519-8 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0301 |
3 | ″ | ″ | anzsrc-for:06 |
4 | ″ | ″ | anzsrc-for:0601 |
5 | ″ | schema:author | N871098d2bd9a4809bc007b2adf941e5f |
6 | ″ | schema:citation | sg:pub.10.1007/978-1-61779-594-7_17 |
7 | ″ | ″ | sg:pub.10.1007/s11306-007-0082-2 |
8 | ″ | ″ | sg:pub.10.1007/s11306-011-0347-7 |
9 | ″ | ″ | sg:pub.10.1007/s11306-011-0363-7 |
10 | ″ | ″ | sg:pub.10.1007/s12566-010-0015-9 |
11 | ″ | ″ | sg:pub.10.1186/1471-2105-11-148 |
12 | ″ | ″ | sg:pub.10.1186/1471-2105-8-105 |
13 | ″ | schema:datePublished | 2013-03-24 |
14 | ″ | schema:datePublishedReg | 2013-03-24 |
15 | ″ | schema:description | Identification of metabolites is a major challenge in biological studies and relies in principle on mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. The increased sensitivity and stability of both NMR and MS systems have made dereplication of complex biological samples feasible. Metabolic databases can be of help in the identification process. Nonetheless, there is still a lack of adequate spectral databases that contain high quality spectra, but new developments in this area will assist in the (semi-)automated identification process in the near future. Here, we discuss new developments for the structural elucidation of low abundant metabolites present in complex sample matrices. We describe how a recently developed combination of high resolution MS multistage fragmentation (MSn) and high resolution one dimensional (1D)-proton (1H)-NMR of liquid chromatography coupled to solid phase extraction (LC–SPE) purified metabolites can circumvent the need for isolating extensive amounts of the compounds of interest to elucidate their structures. The LC–MS–SPE–NMR hardware configuration in conjunction with high quality databases facilitates complete structural elucidation of metabolites even at sub-microgram levels of compound in crude extracts. However, progress is still required to optimally exploit the power of an integrated MS and NMR approach. Especially, there is a need to improve and expand both MSn and NMR spectral databases. Adequate and user-friendly software is required to assist in candidate selection based on the comparison of acquired MS and NMR spectral information with reference data. It is foreseen that these focal points will contribute to a better transfer and exploitation of structural information gained from diverse analytical platforms. |
16 | ″ | schema:genre | article |
17 | ″ | schema:inLanguage | en |
18 | ″ | schema:isAccessibleForFree | false |
19 | ″ | schema:isPartOf | N31473bc4f1be4159a6263a1380a347cd |
20 | ″ | ″ | N48e9e640c96541b3884e1dea5305ca56 |
21 | ″ | ″ | sg:journal.1036887 |
22 | ″ | schema:keywords | LC-MS |
23 | ″ | ″ | MS system |
24 | ″ | ″ | NMR |
25 | ″ | ″ | NMR approach |
26 | ″ | ″ | NMR spectral database |
27 | ″ | ″ | NMR spectral information |
28 | ″ | ″ | abundant metabolites |
29 | ″ | ″ | amount |
30 | ″ | ″ | analytical platform |
31 | ″ | ″ | approach |
32 | ″ | ″ | area |
33 | ″ | ″ | better transfer |
34 | ″ | ″ | biological samples |
35 | ″ | ″ | biological studies |
36 | ″ | ″ | candidate selection |
37 | ″ | ″ | challenges |
38 | ″ | ″ | chromatography |
39 | ″ | ″ | combination |
40 | ″ | ″ | comparison |
41 | ″ | ″ | complete structural elucidation |
42 | ″ | ″ | complex biological samples |
43 | ″ | ″ | complex sample matrices |
44 | ″ | ″ | compounds |
45 | ″ | ″ | compounds of interest |
46 | ″ | ″ | configuration |
47 | ″ | ″ | conjunction |
48 | ″ | ″ | crude extract |
49 | ″ | ″ | data |
50 | ″ | ″ | database |
51 | ″ | ″ | dereplication |
52 | ″ | ″ | development |
53 | ″ | ″ | diverse analytical platforms |
54 | ″ | ″ | elucidation |
55 | ″ | ″ | exploitation |
56 | ″ | ″ | extensive amount |
57 | ″ | ″ | extract |
58 | ″ | ″ | extraction |
59 | ″ | ″ | focal point |
60 | ″ | ″ | fragmentation |
61 | ″ | ″ | future |
62 | ″ | ″ | hardware configuration |
63 | ″ | ″ | help |
64 | ″ | ″ | high-quality database |
65 | ″ | ″ | high-quality spectra |
66 | ″ | ″ | high-resolution one |
67 | ″ | ″ | identification |
68 | ″ | ″ | identification of metabolites |
69 | ″ | ″ | identification process |
70 | ″ | ″ | information |
71 | ″ | ″ | interest |
72 | ″ | ″ | lack |
73 | ″ | ″ | levels |
74 | ″ | ″ | levels of compounds |
75 | ″ | ″ | liquid chromatography |
76 | ″ | ″ | low abundant metabolites |
77 | ″ | ″ | magnetic resonance methods |
78 | ″ | ″ | major challenge |
79 | ″ | ″ | mass spectrometry |
80 | ″ | ″ | matrix |
81 | ″ | ″ | metabolic databases |
82 | ″ | ″ | metabolites |
83 | ″ | ″ | method |
84 | ″ | ″ | multistage fragmentation |
85 | ″ | ″ | near future |
86 | ″ | ″ | need |
87 | ″ | ″ | new developments |
88 | ″ | ″ | nuclear magnetic resonance methods |
89 | ″ | ″ | one |
90 | ″ | ″ | phase extraction |
91 | ″ | ″ | platform |
92 | ″ | ″ | point |
93 | ″ | ″ | power |
94 | ″ | ″ | principles |
95 | ″ | ″ | process |
96 | ″ | ″ | progress |
97 | ″ | ″ | protons |
98 | ″ | ″ | quality database |
99 | ″ | ″ | quality spectra |
100 | ″ | ″ | reference data |
101 | ″ | ″ | relies |
102 | ″ | ″ | resolution one |
103 | ″ | ″ | resonance method |
104 | ″ | ″ | sample matrix |
105 | ″ | ″ | samples |
106 | ″ | ″ | selection |
107 | ″ | ″ | sensitivity |
108 | ″ | ″ | software |
109 | ″ | ″ | solid-phase extraction |
110 | ″ | ″ | spectra |
111 | ″ | ″ | spectral database |
112 | ″ | ″ | spectral information |
113 | ″ | ″ | spectrometry |
114 | ″ | ″ | stability |
115 | ″ | ″ | structural elucidation |
116 | ″ | ″ | structural information |
117 | ″ | ″ | structure |
118 | ″ | ″ | study |
119 | ″ | ″ | system |
120 | ″ | ″ | transfer |
121 | ″ | ″ | user-friendly software |
122 | ″ | schema:name | Structural elucidation of low abundant metabolites in complex sample matrices |
123 | ″ | schema:pagination | 1009-1018 |
124 | ″ | schema:productId | N38c318d856d74f69bf0a245ff5e4b58f |
125 | ″ | ″ | N874158c797ac4b4785d20a3b3963f126 |
126 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033623025 |
127 | ″ | ″ | https://doi.org/10.1007/s11306-013-0519-8 |
128 | ″ | schema:sdDatePublished | 2022-05-20T07:28 |
129 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
130 | ″ | schema:sdPublisher | N8b2bbc16c82a42b7ae0ba2dc04902249 |
131 | ″ | schema:url | https://doi.org/10.1007/s11306-013-0519-8 |
132 | ″ | sgo:license | sg:explorer/license/ |
133 | ″ | sgo:sdDataset | articles |
134 | ″ | rdf:type | schema:ScholarlyArticle |
135 | N31473bc4f1be4159a6263a1380a347cd | schema:issueNumber | 5 |
136 | ″ | rdf:type | schema:PublicationIssue |
137 | N38c318d856d74f69bf0a245ff5e4b58f | schema:name | dimensions_id |
138 | ″ | schema:value | pub.1033623025 |
139 | ″ | rdf:type | schema:PropertyValue |
140 | N3e1b52f4cf7c47d88752df22d49f207f | rdf:first | sg:person.014575024362.22 |
141 | ″ | rdf:rest | N77f2958fd6544be88080e49eb9c6df7e |
142 | N48e9e640c96541b3884e1dea5305ca56 | schema:volumeNumber | 9 |
143 | ″ | rdf:type | schema:PublicationVolume |
144 | N77f2958fd6544be88080e49eb9c6df7e | rdf:first | sg:person.0723152410.34 |
145 | ″ | rdf:rest | N9f56889c8b394334806785d9768bace8 |
146 | N8632c4e0e76c48a29044d3e947508fdf | rdf:first | sg:person.0667062740.44 |
147 | ″ | rdf:rest | rdf:nil |
148 | N871098d2bd9a4809bc007b2adf941e5f | rdf:first | sg:person.014166624614.44 |
149 | ″ | rdf:rest | N3e1b52f4cf7c47d88752df22d49f207f |
150 | N874158c797ac4b4785d20a3b3963f126 | schema:name | doi |
151 | ″ | schema:value | 10.1007/s11306-013-0519-8 |
152 | ″ | rdf:type | schema:PropertyValue |
153 | N8b2bbc16c82a42b7ae0ba2dc04902249 | schema:name | Springer Nature - SN SciGraph project |
154 | ″ | rdf:type | schema:Organization |
155 | N9f56889c8b394334806785d9768bace8 | rdf:first | sg:person.01172021137.78 |
156 | ″ | rdf:rest | N8632c4e0e76c48a29044d3e947508fdf |
157 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
158 | ″ | schema:name | Chemical Sciences |
159 | ″ | rdf:type | schema:DefinedTerm |
160 | anzsrc-for:0301 | schema:inDefinedTermSet | anzsrc-for: |
161 | ″ | schema:name | Analytical Chemistry |
162 | ″ | rdf:type | schema:DefinedTerm |
163 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
164 | ″ | schema:name | Biological Sciences |
165 | ″ | rdf:type | schema:DefinedTerm |
166 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
167 | ″ | schema:name | Biochemistry and Cell Biology |
168 | ″ | rdf:type | schema:DefinedTerm |
169 | sg:journal.1036887 | schema:issn | 1573-3882 |
170 | ″ | ″ | 1573-3890 |
171 | ″ | schema:name | Metabolomics |
172 | ″ | schema:publisher | Springer Nature |
173 | ″ | rdf:type | schema:Periodical |
174 | sg:person.01172021137.78 | schema:affiliation | grid-institutes:grid.450196.f |
175 | ″ | schema:familyName | Vervoort |
176 | ″ | schema:givenName | Jacques |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172021137.78 |
178 | ″ | rdf:type | schema:Person |
179 | sg:person.014166624614.44 | schema:affiliation | grid-institutes:grid.8756.c |
180 | ″ | schema:familyName | van der Hooft |
181 | ″ | schema:givenName | Justin J. J. |
182 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166624614.44 |
183 | ″ | rdf:type | schema:Person |
184 | sg:person.014575024362.22 | schema:affiliation | grid-institutes:grid.450019.9 |
185 | ″ | schema:familyName | de Vos |
186 | ″ | schema:givenName | Ric C. H. |
187 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575024362.22 |
188 | ″ | rdf:type | schema:Person |
189 | sg:person.0667062740.44 | schema:affiliation | grid-institutes:grid.4818.5 |
190 | ″ | schema:familyName | Bino |
191 | ″ | schema:givenName | Raoul J. |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667062740.44 |
193 | ″ | rdf:type | schema:Person |
194 | sg:person.0723152410.34 | schema:affiliation | grid-institutes:grid.454309.f |
195 | ″ | schema:familyName | Ridder |
196 | ″ | schema:givenName | Lars |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723152410.34 |
198 | ″ | rdf:type | schema:Person |
199 | sg:pub.10.1007/978-1-61779-594-7_17 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046331447 |
200 | ″ | ″ | https://doi.org/10.1007/978-1-61779-594-7_17 |
201 | ″ | rdf:type | schema:CreativeWork |
202 | sg:pub.10.1007/s11306-007-0082-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023480149 |
203 | ″ | ″ | https://doi.org/10.1007/s11306-007-0082-2 |
204 | ″ | rdf:type | schema:CreativeWork |
205 | sg:pub.10.1007/s11306-011-0347-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016630060 |
206 | ″ | ″ | https://doi.org/10.1007/s11306-011-0347-7 |
207 | ″ | rdf:type | schema:CreativeWork |
208 | sg:pub.10.1007/s11306-011-0363-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007821767 |
209 | ″ | ″ | https://doi.org/10.1007/s11306-011-0363-7 |
210 | ″ | rdf:type | schema:CreativeWork |
211 | sg:pub.10.1007/s12566-010-0015-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026937003 |
212 | ″ | ″ | https://doi.org/10.1007/s12566-010-0015-9 |
213 | ″ | rdf:type | schema:CreativeWork |
214 | sg:pub.10.1186/1471-2105-11-148 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048363616 |
215 | ″ | ″ | https://doi.org/10.1186/1471-2105-11-148 |
216 | ″ | rdf:type | schema:CreativeWork |
217 | sg:pub.10.1186/1471-2105-8-105 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022661426 |
218 | ″ | ″ | https://doi.org/10.1186/1471-2105-8-105 |
219 | ″ | rdf:type | schema:CreativeWork |
220 | grid-institutes:grid.450019.9 | schema:alternateName | Centre for Biosystems Genomics, POB 98, 6700 AB, Wageningen, The Netherlands |
221 | ″ | schema:name | BU Bioscience, Plant Research International, POB 16, 6700 AA, Wageningen, The Netherlands |
222 | ″ | ″ | Centre for Biosystems Genomics, POB 98, 6700 AB, Wageningen, The Netherlands |
223 | ″ | ″ | Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands |
224 | ″ | rdf:type | schema:Organization |
225 | grid-institutes:grid.450196.f | schema:alternateName | Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands |
226 | ″ | schema:name | Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands |
227 | ″ | ″ | Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands |
228 | ″ | rdf:type | schema:Organization |
229 | grid-institutes:grid.454309.f | schema:alternateName | Netherlands eScience Center, Amsterdam, The Netherlands |
230 | ″ | schema:name | Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands |
231 | ″ | ″ | Netherlands eScience Center, Amsterdam, The Netherlands |
232 | ″ | rdf:type | schema:Organization |
233 | grid-institutes:grid.4818.5 | schema:alternateName | Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700 AR, Wageningen, The Netherlands |
234 | ″ | schema:name | Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700 AR, Wageningen, The Netherlands |
235 | ″ | rdf:type | schema:Organization |
236 | grid-institutes:grid.8756.c | schema:alternateName | University of Glasgow, Joseph Black building, G12 8QQ, Glasgow, UK |
237 | ″ | schema:name | BU Bioscience, Plant Research International, POB 16, 6700 AA, Wageningen, The Netherlands |
238 | ″ | ″ | Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands |
239 | ″ | ″ | Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands |
240 | ″ | ″ | University of Glasgow, Joseph Black building, G12 8QQ, Glasgow, UK |
241 | ″ | rdf:type | schema:Organization |