Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Werner Römisch-Margl, Cornelia Prehn, Ralf Bogumil, Cornelia Röhring, Karsten Suhre, Jerzy Adamski

ABSTRACT

Reproducible quantification of metabolites in tissue samples is of high importance for characterization of animal models and identification of metabolic changes that occur in different tissue types in specific diseases. However, the extraction of metabolites from tissue is often the most labor-intensive and error-prone step in metabolomics studies. Here, we report the development of a standardized high-throughput method for rapid and reproducible extraction of metabolites from multiple tissue samples from different organs of several species. The method involves a bead-based homogenizer in combination with a simple extraction protocol and is compatible with state-of-the-art metabolomics kit technology for quantitative and targeted flow injection tandem mass spectrometry. We analyzed different extraction solvents for both reproducibility as well as suppression effects for a range of different animal tissue types including liver, kidney, muscle, brain, and fat tissue from mouse and bovine. In this study, we show that for most metabolites a simple methanolic extraction is best suited for reliable results. An additional extraction step with phosphate buffer can be used to improve the extraction yields for a few more polar metabolites. We provide a verified tissue extraction setup to be used with different indications. Our results demonstrate that this high-throughput procedure provides a basis for metabolomic assays with a wide spectrum of metabolites. The developed method can be used for tissue extraction setup for different indications like studies of metabolic syndrome, obesity, diabetes or cardiovascular disorders and nutrient transformation in livestock. More... »

PAGES

133-142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-011-0293-4

DOI

http://dx.doi.org/10.1007/s11306-011-0293-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004591576


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, Institute of Bioinformatics and Systems Biology, German Research Center for Environmental Health, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f6misch-Margl", 
        "givenName": "Werner", 
        "id": "sg:person.01266415547.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266415547.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, Institute of Experimental Genetics, Genome Analysis Center, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prehn", 
        "givenName": "Cornelia", 
        "id": "sg:person.01044067704.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044067704.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biocrates Life Sciences (Austria)", 
          "id": "https://www.grid.ac/institutes/grid.431833.e", 
          "name": [
            "BIOCRATES Life Sciences AG, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogumil", 
        "givenName": "Ralf", 
        "id": "sg:person.01255026755.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255026755.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biocrates Life Sciences (Austria)", 
          "id": "https://www.grid.ac/institutes/grid.431833.e", 
          "name": [
            "BIOCRATES Life Sciences AG, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f6hring", 
        "givenName": "Cornelia", 
        "id": "sg:person.01264313213.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264313213.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, Institute of Bioinformatics and Systems Biology, German Research Center for Environmental Health, Neuherberg, Germany", 
            "Faculty of Biology, Ludwig-Maximilians-Universit\u00e4t, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suhre", 
        "givenName": "Karsten", 
        "id": "sg:person.01113051245.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113051245.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen, Institute of Experimental Genetics, Genome Analysis Center, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany", 
            "Lehrstuhl f\u00fcr Experimentelle Genetik, Technische Universit\u00e4t M\u00fcnchen, 85350, Freising-Weihenstephan, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adamski", 
        "givenName": "Jerzy", 
        "id": "sg:person.01227277645.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/o59-099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001206449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0003863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001929310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2010.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003008400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003091868", 
          "https://doi.org/10.1038/ng.507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003091868", 
          "https://doi.org/10.1038/ng.507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-471-1_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008884167", 
          "https://doi.org/10.1007/978-1-59745-471-1_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010801810", 
          "https://doi.org/10.1038/nature07762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2007.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013053773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2008.05.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014027167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2007.05676.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017691575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/ard.2009.120857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024838753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-07-2594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025949589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0731-7085(02)00455-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028846751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0731-7085(02)00455-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028846751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/14622416.7.7.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036189108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-7-72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036704324", 
          "https://doi.org/10.1186/1476-4598-7-72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2006.077834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038219439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.200900116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039115024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.200900116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039115024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040184226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsbmb.2010.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041598644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041945577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00120.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044241104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mce.2008.10.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046682292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2006.125799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047096230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-009-0174-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050845067", 
          "https://doi.org/10.1007/s11306-009-0174-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-009-0174-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050845067", 
          "https://doi.org/10.1007/s11306-009-0174-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/en.2007-1747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064249179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920109787315051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069177589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156652410790963312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069186074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075727656", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/aab-45-317-2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092931402"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "Reproducible quantification of metabolites in tissue samples is of high importance for characterization of animal models and identification of metabolic changes that occur in different tissue types in specific diseases. However, the extraction of metabolites from tissue is often the most labor-intensive and error-prone step in metabolomics studies. Here, we report the development of a standardized high-throughput method for rapid and reproducible extraction of metabolites from multiple tissue samples from different organs of several species. The method involves a bead-based homogenizer in combination with a simple extraction protocol and is compatible with state-of-the-art metabolomics kit technology for quantitative and targeted flow injection tandem mass spectrometry. We analyzed different extraction solvents for both reproducibility as well as suppression effects for a range of different animal tissue types including liver, kidney, muscle, brain, and fat tissue from mouse and bovine. In this study, we show that for most metabolites a simple methanolic extraction is best suited for reliable results. An additional extraction step with phosphate buffer can be used to improve the extraction yields for a few more polar metabolites. We provide a verified tissue extraction setup to be used with different indications. Our results demonstrate that this high-throughput procedure provides a basis for metabolomic assays with a wide spectrum of metabolites. The developed method can be used for tissue extraction setup for different indications like studies of metabolic syndrome, obesity, diabetes or cardiovascular disorders and nutrient transformation in livestock.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-011-0293-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics", 
    "pagination": "133-142", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15e123da241f420ddd72ba785d57dab7de547bedaee3671f02d54322f2f702f1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-011-0293-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004591576"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-011-0293-4", 
      "https://app.dimensions.ai/details/publication/pub.1004591576"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11306-011-0293-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-011-0293-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-011-0293-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-011-0293-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-011-0293-4'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-011-0293-4 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N356c0b4bff5b473ca57e996833b822a7
4 schema:citation sg:pub.10.1007/978-1-59745-471-1_25
5 sg:pub.10.1007/s11306-009-0174-2
6 sg:pub.10.1038/nature07762
7 sg:pub.10.1038/ng.507
8 sg:pub.10.1186/1476-4598-7-72
9 https://app.dimensions.ai/details/publication/pub.1075727656
10 https://doi.org/10.1002/mnfr.200900116
11 https://doi.org/10.1016/j.ab.2007.10.002
12 https://doi.org/10.1016/j.ab.2008.05.051
13 https://doi.org/10.1016/j.ab.2010.07.002
14 https://doi.org/10.1016/j.jsbmb.2010.03.039
15 https://doi.org/10.1016/j.mce.2008.10.047
16 https://doi.org/10.1016/s0731-7085(02)00455-7
17 https://doi.org/10.1093/nar/gkm324
18 https://doi.org/10.1111/j.1742-4658.2007.05676.x
19 https://doi.org/10.1113/jphysiol.2006.125799
20 https://doi.org/10.1136/ard.2009.120857
21 https://doi.org/10.1139/o59-099
22 https://doi.org/10.1152/physiolgenomics.00120.2010
23 https://doi.org/10.1158/1055-9965.epi-07-2594
24 https://doi.org/10.1210/en.2007-1747
25 https://doi.org/10.1371/journal.pgen.1000282
26 https://doi.org/10.1371/journal.pone.0003863
27 https://doi.org/10.1373/clinchem.2006.077834
28 https://doi.org/10.2144/000112893
29 https://doi.org/10.2174/138920109787315051
30 https://doi.org/10.2174/156652410790963312
31 https://doi.org/10.2217/14622416.7.7.1095
32 https://doi.org/10.5194/aab-45-317-2002
33 schema:datePublished 2012-02
34 schema:datePublishedReg 2012-02-01
35 schema:description Reproducible quantification of metabolites in tissue samples is of high importance for characterization of animal models and identification of metabolic changes that occur in different tissue types in specific diseases. However, the extraction of metabolites from tissue is often the most labor-intensive and error-prone step in metabolomics studies. Here, we report the development of a standardized high-throughput method for rapid and reproducible extraction of metabolites from multiple tissue samples from different organs of several species. The method involves a bead-based homogenizer in combination with a simple extraction protocol and is compatible with state-of-the-art metabolomics kit technology for quantitative and targeted flow injection tandem mass spectrometry. We analyzed different extraction solvents for both reproducibility as well as suppression effects for a range of different animal tissue types including liver, kidney, muscle, brain, and fat tissue from mouse and bovine. In this study, we show that for most metabolites a simple methanolic extraction is best suited for reliable results. An additional extraction step with phosphate buffer can be used to improve the extraction yields for a few more polar metabolites. We provide a verified tissue extraction setup to be used with different indications. Our results demonstrate that this high-throughput procedure provides a basis for metabolomic assays with a wide spectrum of metabolites. The developed method can be used for tissue extraction setup for different indications like studies of metabolic syndrome, obesity, diabetes or cardiovascular disorders and nutrient transformation in livestock.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N467958995a404aa492f255d899b4c7d7
40 N6936cf9d07524e6f9e50ad3324b5228a
41 sg:journal.1036887
42 schema:name Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics
43 schema:pagination 133-142
44 schema:productId N017b1be01636481e9625750043cfd385
45 N3157ae3d77ee4fea883b1fdb873f2d38
46 N84804021979b42fdb75eee9dbbb46c1a
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004591576
48 https://doi.org/10.1007/s11306-011-0293-4
49 schema:sdDatePublished 2019-04-10T15:03
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nc3566200b97248fc91ff37b83c3cdbdd
52 schema:url http://link.springer.com/10.1007%2Fs11306-011-0293-4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N017b1be01636481e9625750043cfd385 schema:name doi
57 schema:value 10.1007/s11306-011-0293-4
58 rdf:type schema:PropertyValue
59 N3157ae3d77ee4fea883b1fdb873f2d38 schema:name readcube_id
60 schema:value 15e123da241f420ddd72ba785d57dab7de547bedaee3671f02d54322f2f702f1
61 rdf:type schema:PropertyValue
62 N356c0b4bff5b473ca57e996833b822a7 rdf:first sg:person.01266415547.00
63 rdf:rest N47857952c3b544e5b6288c1a8fcd06af
64 N394a5ad4305047d88fc277fa0ed6909c rdf:first sg:person.01227277645.30
65 rdf:rest rdf:nil
66 N467958995a404aa492f255d899b4c7d7 schema:volumeNumber 8
67 rdf:type schema:PublicationVolume
68 N47857952c3b544e5b6288c1a8fcd06af rdf:first sg:person.01044067704.25
69 rdf:rest N75d4374fd14c4ad7915523ab83e24304
70 N6936cf9d07524e6f9e50ad3324b5228a schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N75d4374fd14c4ad7915523ab83e24304 rdf:first sg:person.01255026755.08
73 rdf:rest Nbd7413d0639f4d7bb9a544dc8e522c56
74 N84804021979b42fdb75eee9dbbb46c1a schema:name dimensions_id
75 schema:value pub.1004591576
76 rdf:type schema:PropertyValue
77 Na84b35509d9c4aeba811bfeaecc042ef rdf:first sg:person.01113051245.30
78 rdf:rest N394a5ad4305047d88fc277fa0ed6909c
79 Nbd7413d0639f4d7bb9a544dc8e522c56 rdf:first sg:person.01264313213.43
80 rdf:rest Na84b35509d9c4aeba811bfeaecc042ef
81 Nc3566200b97248fc91ff37b83c3cdbdd schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
84 schema:name Medical and Health Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
87 schema:name Clinical Sciences
88 rdf:type schema:DefinedTerm
89 sg:journal.1036887 schema:issn 1573-3882
90 1573-3890
91 schema:name Metabolomics
92 rdf:type schema:Periodical
93 sg:person.01044067704.25 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
94 schema:familyName Prehn
95 schema:givenName Cornelia
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044067704.25
97 rdf:type schema:Person
98 sg:person.01113051245.30 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
99 schema:familyName Suhre
100 schema:givenName Karsten
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113051245.30
102 rdf:type schema:Person
103 sg:person.01227277645.30 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
104 schema:familyName Adamski
105 schema:givenName Jerzy
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227277645.30
107 rdf:type schema:Person
108 sg:person.01255026755.08 schema:affiliation https://www.grid.ac/institutes/grid.431833.e
109 schema:familyName Bogumil
110 schema:givenName Ralf
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255026755.08
112 rdf:type schema:Person
113 sg:person.01264313213.43 schema:affiliation https://www.grid.ac/institutes/grid.431833.e
114 schema:familyName Röhring
115 schema:givenName Cornelia
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264313213.43
117 rdf:type schema:Person
118 sg:person.01266415547.00 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
119 schema:familyName Römisch-Margl
120 schema:givenName Werner
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266415547.00
122 rdf:type schema:Person
123 sg:pub.10.1007/978-1-59745-471-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008884167
124 https://doi.org/10.1007/978-1-59745-471-1_25
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11306-009-0174-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050845067
127 https://doi.org/10.1007/s11306-009-0174-2
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature07762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010801810
130 https://doi.org/10.1038/nature07762
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ng.507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003091868
133 https://doi.org/10.1038/ng.507
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/1476-4598-7-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036704324
136 https://doi.org/10.1186/1476-4598-7-72
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1075727656 schema:CreativeWork
139 https://doi.org/10.1002/mnfr.200900116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039115024
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ab.2007.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013053773
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ab.2008.05.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014027167
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ab.2010.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003008400
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jsbmb.2010.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041598644
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.mce.2008.10.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046682292
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0731-7085(02)00455-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028846751
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/nar/gkm324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040184226
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.1742-4658.2007.05676.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017691575
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1113/jphysiol.2006.125799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047096230
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1136/ard.2009.120857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024838753
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1139/o59-099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001206449
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1152/physiolgenomics.00120.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044241104
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1158/1055-9965.epi-07-2594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025949589
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1210/en.2007-1747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064249179
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1371/journal.pgen.1000282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041945577
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1371/journal.pone.0003863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001929310
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1373/clinchem.2006.077834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038219439
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2144/000112893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095851
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2174/138920109787315051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069177589
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2174/156652410790963312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069186074
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2217/14622416.7.7.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036189108
182 rdf:type schema:CreativeWork
183 https://doi.org/10.5194/aab-45-317-2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092931402
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.431833.e schema:alternateName Biocrates Life Sciences (Austria)
186 schema:name BIOCRATES Life Sciences AG, Innsbruck, Austria
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.4567.0 schema:alternateName Helmholtz Zentrum München
189 schema:name Helmholtz Zentrum München, Institute of Bioinformatics and Systems Biology, German Research Center for Environmental Health, Neuherberg, Germany
190 Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
193 schema:name Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
194 Helmholtz Zentrum München, Institute of Bioinformatics and Systems Biology, German Research Center for Environmental Health, Neuherberg, Germany
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
197 schema:name Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
198 Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350, Freising-Weihenstephan, Germany
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...