Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-06

AUTHORS

Jun Han, Ryan M. Danell, Jayanti R. Patel, Dmitry R. Gumerov, Cameron O. Scarlett, J. Paul Speir, Carol E. Parker, Ivan Rusyn, Steven Zeisel, Christoph H. Borchers

ABSTRACT

With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbred-strain mouse serum by direct infusion (DI). Using internal mass calibration (mass error ≤1 ppm), we determined the rational elemental compositions (incorporating unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100 metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute quantitation of choline with sub-pmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a 600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene (TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics, with more than 400 metabolites profiled in only 24 h. Our experiments demonstrate that DI/FTICR-MS is well-suited for high-throughput metabolomic analysis. More... »

PAGES

128-140

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-008-0104-8

DOI

http://dx.doi.org/10.1007/s11306-008-0104-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019348710

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19081807


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "University of Victoria \u2013 Genome BC Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., V8Z 7X8, Victoria, BC, Canada", 
            "Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Jun", 
        "id": "sg:person.01170036177.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170036177.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Danell Consulting, Greenville, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danell", 
        "givenName": "Ryan M.", 
        "id": "sg:person.01234146654.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234146654.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bruker Daltonics Inc., Billerica, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Jayanti R.", 
        "id": "sg:person.0774675314.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774675314.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bruker Daltonics Inc., Billerica, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gumerov", 
        "givenName": "Dmitry R.", 
        "id": "sg:person.01050577467.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050577467.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States", 
            "UNC-Duke Proteomics Center, University of North Carolina, Chapel Hill, NC, USA", 
            "School of Pharmacy, University of Wisconsin, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scarlett", 
        "givenName": "Cameron O.", 
        "id": "sg:person.01104061303.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104061303.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bruker Daltonics Inc., Billerica, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speir", 
        "givenName": "J. Paul", 
        "id": "sg:person.0653500570.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653500570.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States", 
            "UNC-Duke Proteomics Center, University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parker", 
        "givenName": "Carol E.", 
        "id": "sg:person.01344400575.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344400575.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rusyn", 
        "givenName": "Ivan", 
        "id": "sg:person.01325773105.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325773105.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeisel", 
        "givenName": "Steven", 
        "id": "sg:person.01021332043.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021332043.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "University of Victoria \u2013 Genome BC Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., V8Z 7X8, Victoria, BC, Canada", 
            "Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States", 
            "UNC-Duke Proteomics Center, University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borchers", 
        "givenName": "Christoph H.", 
        "id": "sg:person.0621767077.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621767077.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1042/cs20050006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000786606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20050006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000786606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2004.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006330105", 
          "https://doi.org/10.1016/j.jasms.2004.08.016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-06-0755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014734045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015722031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2004.02187.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017000845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-007-1650-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020372083", 
          "https://doi.org/10.1007/s00216-007-1650-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-007-1650-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020372083", 
          "https://doi.org/10.1007/s00216-007-1650-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00425-007-0594-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020444729", 
          "https://doi.org/10.1007/s00425-007-0594-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00425-007-0594-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020444729", 
          "https://doi.org/10.1007/s00425-007-0594-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0403218101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020889945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0231(19990228)13:4<279::aid-rcm478>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021370392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/004982599238047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022006804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022131184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022661426", 
          "https://doi.org/10.1186/1471-2105-8-105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022744420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b418288j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022837755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2007.089011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023199664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-1669(00)00165-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025244787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308877", 
          "https://doi.org/10.1038/nprot.2007.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308877", 
          "https://doi.org/10.1038/nprot.2007.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2005.02371.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031376143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.2001.5183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035365796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(89)90091-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035379276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2007.08.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035515280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037967197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2911(08)60148-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038089113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038368215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040184226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m601876200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041240270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.20011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041830253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045172077", 
          "https://doi.org/10.1186/1471-2105-7-234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01977773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045546262", 
          "https://doi.org/10.1007/bf01977773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01977773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045546262", 
          "https://doi.org/10.1007/bf01977773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047043461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051888256", 
          "https://doi.org/10.1038/nbt823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051888256", 
          "https://doi.org/10.1038/nbt823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac010733h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054992632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac010733h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054992632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac020146b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac020146b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac022010j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac022010j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054993860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025624x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025624x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051312t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051312t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac070237e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054999257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac070237e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054999257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/15362310260256882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059214992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076997151", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbred-strain mouse serum by direct infusion (DI). Using internal mass calibration (mass error \u22641 ppm), we determined the rational elemental compositions (incorporating unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100 metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute quantitation of choline with sub-pmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a 600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene (TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics, with more than 400 metabolites profiled in only 24 h. Our experiments demonstrate that DI/FTICR-MS is well-suited for high-throughput metabolomic analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-008-0104-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439107", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2673723", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2444170", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2674128", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438821", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry", 
    "pagination": "128-140", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5c3077c5af1d5c53cbe2d9b262405c653fe391781883ce6673cf65258ad46d53"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19081807"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101274889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-008-0104-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019348710"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-008-0104-8", 
      "https://app.dimensions.ai/details/publication/pub.1019348710"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11306-008-0104-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-008-0104-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-008-0104-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-008-0104-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-008-0104-8'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-008-0104-8 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Nb1e708635aa84103987cc9f424123e99
4 schema:citation sg:pub.10.1007/bf01977773
5 sg:pub.10.1007/s00216-007-1650-z
6 sg:pub.10.1007/s00425-007-0594-z
7 sg:pub.10.1016/j.jasms.2004.08.016
8 sg:pub.10.1038/nbt823
9 sg:pub.10.1038/nprot.2007.95
10 sg:pub.10.1186/1471-2105-7-234
11 sg:pub.10.1186/1471-2105-8-105
12 https://app.dimensions.ai/details/publication/pub.1076997151
13 https://doi.org/10.1002/(sici)1097-0231(19990228)13:4<279::aid-rcm478>3.0.co;2-i
14 https://doi.org/10.1002/mas.20011
15 https://doi.org/10.1002/rcm.1627
16 https://doi.org/10.1002/rcm.1829
17 https://doi.org/10.1006/abio.2001.5183
18 https://doi.org/10.1016/0003-2697(89)90091-2
19 https://doi.org/10.1016/j.chemosphere.2007.08.056
20 https://doi.org/10.1016/j.tibtech.2004.03.007
21 https://doi.org/10.1016/s0065-2911(08)60148-4
22 https://doi.org/10.1016/s0958-1669(00)00165-8
23 https://doi.org/10.1021/ac010733h
24 https://doi.org/10.1021/ac020146b
25 https://doi.org/10.1021/ac022010j
26 https://doi.org/10.1021/ac025624x
27 https://doi.org/10.1021/ac051312t
28 https://doi.org/10.1021/ac062446p
29 https://doi.org/10.1021/ac070237e
30 https://doi.org/10.1039/b418288j
31 https://doi.org/10.1042/cs20050006
32 https://doi.org/10.1073/pnas.0403218101
33 https://doi.org/10.1073/pnas.95.25.14863
34 https://doi.org/10.1074/jbc.m601876200
35 https://doi.org/10.1080/004982599238047
36 https://doi.org/10.1089/15362310260256882
37 https://doi.org/10.1093/bioinformatics/bth349
38 https://doi.org/10.1093/nar/27.1.29
39 https://doi.org/10.1093/nar/gkl838
40 https://doi.org/10.1093/nar/gkl923
41 https://doi.org/10.1093/nar/gkm324
42 https://doi.org/10.1111/j.1365-313x.2004.02187.x
43 https://doi.org/10.1111/j.1365-313x.2005.02371.x
44 https://doi.org/10.1158/0008-5472.can-06-0755
45 https://doi.org/10.1373/clinchem.2007.089011
46 schema:datePublished 2008-06
47 schema:datePublishedReg 2008-06-01
48 schema:description With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbred-strain mouse serum by direct infusion (DI). Using internal mass calibration (mass error ≤1 ppm), we determined the rational elemental compositions (incorporating unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100 metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute quantitation of choline with sub-pmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a 600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene (TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics, with more than 400 metabolites profiled in only 24 h. Our experiments demonstrate that DI/FTICR-MS is well-suited for high-throughput metabolomic analysis.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N30469cfe3b9446abba67c42aab17999d
53 N97b93817763b4c65aa6f343c7f71deb7
54 sg:journal.1036887
55 schema:name Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry
56 schema:pagination 128-140
57 schema:productId N3ef88eb4738a4a2db1a543f7057b1c4b
58 N5e81bbfe1a624058a2583abd845c1591
59 Nc519a9d89b5b40a3a0df9e9d7cbe617b
60 Ncd4cac1bf28249c4a1e722de7af6791a
61 Nea52798b507c4a9094973c38627abfac
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019348710
63 https://doi.org/10.1007/s11306-008-0104-8
64 schema:sdDatePublished 2019-04-10T17:34
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N52f597a536634a9eab91221403ecebd0
67 schema:url http://link.springer.com/10.1007%2Fs11306-008-0104-8
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N2742af4755494c0781155f58f10cb386 schema:name Bruker Daltonics Inc., Billerica, MA, USA
72 rdf:type schema:Organization
73 N30469cfe3b9446abba67c42aab17999d schema:issueNumber 2
74 rdf:type schema:PublicationIssue
75 N36e14c1f1b3b4bfeb10a644a2b3d0729 schema:name Bruker Daltonics Inc., Billerica, MA, USA
76 rdf:type schema:Organization
77 N3d2be0b79e83435aa9843d480b4066b8 rdf:first sg:person.0653500570.35
78 rdf:rest N58c36a1272b14809925080fd32e31a4d
79 N3ef88eb4738a4a2db1a543f7057b1c4b schema:name pubmed_id
80 schema:value 19081807
81 rdf:type schema:PropertyValue
82 N52f597a536634a9eab91221403ecebd0 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N58c36a1272b14809925080fd32e31a4d rdf:first sg:person.01344400575.49
85 rdf:rest Na9e8da333e5b439abfaef0722fb88c01
86 N5d565b2079c046c2b026953c895cba9c rdf:first sg:person.01234146654.05
87 rdf:rest Na3cf1bc2204541a285795b23e9659a70
88 N5e81bbfe1a624058a2583abd845c1591 schema:name nlm_unique_id
89 schema:value 101274889
90 rdf:type schema:PropertyValue
91 N6630d1b2280f41149ac48f4ae345f326 rdf:first sg:person.01021332043.31
92 rdf:rest Nbfa1a9b2759944f78ee17cab7a18fb2c
93 N798f15a9eefa45ed8f0f1674a0a7bb27 rdf:first sg:person.01050577467.92
94 rdf:rest Nf375cab22d954fb88708d37fa1bd027f
95 N7df3562a762245ef8e7457a82cdf26e4 schema:name Bruker Daltonics Inc., Billerica, MA, USA
96 rdf:type schema:Organization
97 N97b93817763b4c65aa6f343c7f71deb7 schema:volumeNumber 4
98 rdf:type schema:PublicationVolume
99 Na3cf1bc2204541a285795b23e9659a70 rdf:first sg:person.0774675314.21
100 rdf:rest N798f15a9eefa45ed8f0f1674a0a7bb27
101 Na9e8da333e5b439abfaef0722fb88c01 rdf:first sg:person.01325773105.88
102 rdf:rest N6630d1b2280f41149ac48f4ae345f326
103 Nb1e708635aa84103987cc9f424123e99 rdf:first sg:person.01170036177.41
104 rdf:rest N5d565b2079c046c2b026953c895cba9c
105 Nbfa1a9b2759944f78ee17cab7a18fb2c rdf:first sg:person.0621767077.53
106 rdf:rest rdf:nil
107 Nc519a9d89b5b40a3a0df9e9d7cbe617b schema:name dimensions_id
108 schema:value pub.1019348710
109 rdf:type schema:PropertyValue
110 Ncd4cac1bf28249c4a1e722de7af6791a schema:name doi
111 schema:value 10.1007/s11306-008-0104-8
112 rdf:type schema:PropertyValue
113 Nd7de100711f04853831afe3cd92c3e3d schema:name Danell Consulting, Greenville, NC, USA
114 rdf:type schema:Organization
115 Nea52798b507c4a9094973c38627abfac schema:name readcube_id
116 schema:value 5c3077c5af1d5c53cbe2d9b262405c653fe391781883ce6673cf65258ad46d53
117 rdf:type schema:PropertyValue
118 Nf375cab22d954fb88708d37fa1bd027f rdf:first sg:person.01104061303.01
119 rdf:rest N3d2be0b79e83435aa9843d480b4066b8
120 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
121 schema:name Chemical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
124 schema:name Analytical Chemistry
125 rdf:type schema:DefinedTerm
126 sg:grant.2438821 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-008-0104-8
127 rdf:type schema:MonetaryGrant
128 sg:grant.2439107 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-008-0104-8
129 rdf:type schema:MonetaryGrant
130 sg:grant.2444170 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-008-0104-8
131 rdf:type schema:MonetaryGrant
132 sg:grant.2673723 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-008-0104-8
133 rdf:type schema:MonetaryGrant
134 sg:grant.2674128 http://pending.schema.org/fundedItem sg:pub.10.1007/s11306-008-0104-8
135 rdf:type schema:MonetaryGrant
136 sg:journal.1036887 schema:issn 1573-3882
137 1573-3890
138 schema:name Metabolomics
139 rdf:type schema:Periodical
140 sg:person.01021332043.31 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
141 schema:familyName Zeisel
142 schema:givenName Steven
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021332043.31
144 rdf:type schema:Person
145 sg:person.01050577467.92 schema:affiliation N7df3562a762245ef8e7457a82cdf26e4
146 schema:familyName Gumerov
147 schema:givenName Dmitry R.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050577467.92
149 rdf:type schema:Person
150 sg:person.01104061303.01 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
151 schema:familyName Scarlett
152 schema:givenName Cameron O.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104061303.01
154 rdf:type schema:Person
155 sg:person.01170036177.41 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
156 schema:familyName Han
157 schema:givenName Jun
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170036177.41
159 rdf:type schema:Person
160 sg:person.01234146654.05 schema:affiliation Nd7de100711f04853831afe3cd92c3e3d
161 schema:familyName Danell
162 schema:givenName Ryan M.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234146654.05
164 rdf:type schema:Person
165 sg:person.01325773105.88 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
166 schema:familyName Rusyn
167 schema:givenName Ivan
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325773105.88
169 rdf:type schema:Person
170 sg:person.01344400575.49 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
171 schema:familyName Parker
172 schema:givenName Carol E.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344400575.49
174 rdf:type schema:Person
175 sg:person.0621767077.53 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
176 schema:familyName Borchers
177 schema:givenName Christoph H.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621767077.53
179 rdf:type schema:Person
180 sg:person.0653500570.35 schema:affiliation N2742af4755494c0781155f58f10cb386
181 schema:familyName Speir
182 schema:givenName J. Paul
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653500570.35
184 rdf:type schema:Person
185 sg:person.0774675314.21 schema:affiliation N36e14c1f1b3b4bfeb10a644a2b3d0729
186 schema:familyName Patel
187 schema:givenName Jayanti R.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774675314.21
189 rdf:type schema:Person
190 sg:pub.10.1007/bf01977773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045546262
191 https://doi.org/10.1007/bf01977773
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s00216-007-1650-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020372083
194 https://doi.org/10.1007/s00216-007-1650-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00425-007-0594-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020444729
197 https://doi.org/10.1007/s00425-007-0594-z
198 rdf:type schema:CreativeWork
199 sg:pub.10.1016/j.jasms.2004.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006330105
200 https://doi.org/10.1016/j.jasms.2004.08.016
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nbt823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051888256
203 https://doi.org/10.1038/nbt823
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nprot.2007.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308877
206 https://doi.org/10.1038/nprot.2007.95
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2105-7-234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045172077
209 https://doi.org/10.1186/1471-2105-7-234
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1471-2105-8-105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022661426
212 https://doi.org/10.1186/1471-2105-8-105
213 rdf:type schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1076997151 schema:CreativeWork
215 https://doi.org/10.1002/(sici)1097-0231(19990228)13:4<279::aid-rcm478>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1021370392
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/mas.20011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041830253
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/rcm.1627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022744420
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/rcm.1829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047043461
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1006/abio.2001.5183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035365796
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/0003-2697(89)90091-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035379276
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.chemosphere.2007.08.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035515280
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.tibtech.2004.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037967197
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s0065-2911(08)60148-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038089113
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0958-1669(00)00165-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025244787
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1021/ac010733h schema:sameAs https://app.dimensions.ai/details/publication/pub.1054992632
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1021/ac020146b schema:sameAs https://app.dimensions.ai/details/publication/pub.1054993421
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1021/ac022010j schema:sameAs https://app.dimensions.ai/details/publication/pub.1054993860
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1021/ac025624x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054994086
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1021/ac051312t schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997367
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/ac062446p schema:sameAs https://app.dimensions.ai/details/publication/pub.1033780872
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/ac070237e schema:sameAs https://app.dimensions.ai/details/publication/pub.1054999257
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1039/b418288j schema:sameAs https://app.dimensions.ai/details/publication/pub.1022837755
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1042/cs20050006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000786606
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1073/pnas.0403218101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020889945
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1074/jbc.m601876200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041240270
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1080/004982599238047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022006804
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1089/15362310260256882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059214992
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/bioinformatics/bth349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015722031
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/nar/27.1.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521131
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1093/nar/gkl838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022131184
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/nar/gkl923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038368215
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/nar/gkm324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040184226
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1111/j.1365-313x.2004.02187.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017000845
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1111/j.1365-313x.2005.02371.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031376143
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1158/0008-5472.can-06-0755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014734045
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1373/clinchem.2007.089011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023199664
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
282 schema:name Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States
283 School of Pharmacy, University of Wisconsin, Madison, WI, USA
284 UNC-Duke Proteomics Center, University of North Carolina, Chapel Hill, NC, USA
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
287 schema:name Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States
288 Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
289 Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
290 UNC-Duke Proteomics Center, University of North Carolina, Chapel Hill, NC, USA
291 University of Victoria – Genome BC Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., V8Z 7X8, Victoria, BC, Canada
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...