Assessment of PLSDA cross validation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01-24

AUTHORS

Johan A. Westerhuis, Huub C. J. Hoefsloot, Suzanne Smit, Daniel J. Vis, Age K. Smilde, Ewoud J. J. van Velzen, John P. M. van Duijnhoven, Ferdi A. van Dorsten

ABSTRACT

Classifying groups of individuals based on their metabolic profile is one of the main topics in metabolomics research. Due to the low number of individuals compared to the large number of variables, this is not an easy task. PLSDA is one of the data analysis methods used for the classification. Unfortunately this method eagerly overfits the data and rigorous validation is necessary. The validation however is far from straightforward. Is this paper we will discuss a strategy based on cross model validation and permutation testing to validate the classification models. It is also shown that too optimistic results are obtained when the validation is not done properly. Furthermore, we advocate against the use of PLSDA score plots for inference of class differences. More... »

PAGES

81-89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-007-0099-6

DOI

http://dx.doi.org/10.1007/s11306-007-0099-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022973183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Westerhuis", 
        "givenName": "Johan A.", 
        "id": "sg:person.01337442505.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337442505.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoefsloot", 
        "givenName": "Huub C. J.", 
        "id": "sg:person.012737547773.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737547773.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smit", 
        "givenName": "Suzanne", 
        "id": "sg:person.01077534437.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077534437.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vis", 
        "givenName": "Daniel J.", 
        "id": "sg:person.0716231256.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716231256.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smilde", 
        "givenName": "Age K.", 
        "id": "sg:person.01341630104.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341630104.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.10761.31", 
          "name": [
            "Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland", 
            "Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Velzen", 
        "givenName": "Ewoud J. J.", 
        "id": "sg:person.01136251671.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136251671.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.10761.31", 
          "name": [
            "Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Duijnhoven", 
        "givenName": "John P. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.10761.31", 
          "name": [
            "Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Dorsten", 
        "givenName": "Ferdi A.", 
        "id": "sg:person.0603527131.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603527131.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-006-0037-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014281361", 
          "https://doi.org/10.1007/s11306-006-0037-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026508206", 
          "https://doi.org/10.1038/nature04648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-006-0022-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012538768", 
          "https://doi.org/10.1007/s11306-006-0022-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013713905833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027843923", 
          "https://doi.org/10.1023/a:1013713905833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-005-0231-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017701472", 
          "https://doi.org/10.1007/s10295-005-0231-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3449-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047768762", 
          "https://doi.org/10.1007/978-1-4757-3449-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11503415_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025767553", 
          "https://doi.org/10.1007/11503415_34"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01-24", 
    "datePublishedReg": "2008-01-24", 
    "description": "Classifying groups of individuals based on their metabolic profile is one of the main topics in metabolomics research. Due to the low number of individuals compared to the large number of variables, this is not an easy task. PLSDA is one of the data analysis methods used for the classification. Unfortunately this method eagerly overfits the data and rigorous validation is necessary. The validation however is far from straightforward. Is this paper we will discuss a strategy based on cross model validation and permutation testing to validate the classification models. It is also shown that too optimistic results are obtained when the validation is not done properly. Furthermore, we advocate against the use of PLSDA score plots for inference of class differences.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11306-007-0099-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "cross model validation", 
      "data analysis methods", 
      "model validation", 
      "permutation testing", 
      "analysis method", 
      "large number", 
      "cross validation", 
      "optimistic results", 
      "main topics", 
      "inference", 
      "rigorous validation", 
      "easy task", 
      "number", 
      "model", 
      "validation", 
      "variables", 
      "classification model", 
      "straightforward", 
      "group of individuals", 
      "results", 
      "topic", 
      "low number", 
      "data", 
      "task", 
      "profile", 
      "classification", 
      "plots", 
      "metabolomics research", 
      "class differences", 
      "PLSDA", 
      "use", 
      "strategies", 
      "research", 
      "score plot", 
      "testing", 
      "individuals", 
      "differences", 
      "group", 
      "assessment", 
      "method", 
      "metabolic profile", 
      "paper"
    ], 
    "name": "Assessment of PLSDA cross validation", 
    "pagination": "81-89", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022973183"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-007-0099-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-007-0099-6", 
      "https://app.dimensions.ai/details/publication/pub.1022973183"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_453.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11306-007-0099-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-007-0099-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-007-0099-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-007-0099-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-007-0099-6'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      78 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-007-0099-6 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 anzsrc-for:06
4 anzsrc-for:0601
5 anzsrc-for:11
6 anzsrc-for:1103
7 schema:author N5d91c990eb534aaabef32ab45b9e32cb
8 schema:citation sg:pub.10.1007/11503415_34
9 sg:pub.10.1007/978-1-4757-3449-2
10 sg:pub.10.1007/bf00058655
11 sg:pub.10.1007/s10295-005-0231-4
12 sg:pub.10.1007/s11306-006-0022-6
13 sg:pub.10.1007/s11306-006-0037-z
14 sg:pub.10.1023/a:1013713905833
15 sg:pub.10.1038/nature04648
16 schema:datePublished 2008-01-24
17 schema:datePublishedReg 2008-01-24
18 schema:description Classifying groups of individuals based on their metabolic profile is one of the main topics in metabolomics research. Due to the low number of individuals compared to the large number of variables, this is not an easy task. PLSDA is one of the data analysis methods used for the classification. Unfortunately this method eagerly overfits the data and rigorous validation is necessary. The validation however is far from straightforward. Is this paper we will discuss a strategy based on cross model validation and permutation testing to validate the classification models. It is also shown that too optimistic results are obtained when the validation is not done properly. Furthermore, we advocate against the use of PLSDA score plots for inference of class differences.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf N7f57417a3a0d4415b9f7a8627eeba482
22 Nf7a8ee30515f44d39f79160f6c5d331f
23 sg:journal.1036887
24 schema:keywords PLSDA
25 analysis method
26 assessment
27 class differences
28 classification
29 classification model
30 cross model validation
31 cross validation
32 data
33 data analysis methods
34 differences
35 easy task
36 group
37 group of individuals
38 individuals
39 inference
40 large number
41 low number
42 main topics
43 metabolic profile
44 metabolomics research
45 method
46 model
47 model validation
48 number
49 optimistic results
50 paper
51 permutation testing
52 plots
53 profile
54 research
55 results
56 rigorous validation
57 score plot
58 straightforward
59 strategies
60 task
61 testing
62 topic
63 use
64 validation
65 variables
66 schema:name Assessment of PLSDA cross validation
67 schema:pagination 81-89
68 schema:productId N246cb1b56a5849259ca165493db7a322
69 N49f49fece9714e218146ae8d0c10c22e
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022973183
71 https://doi.org/10.1007/s11306-007-0099-6
72 schema:sdDatePublished 2022-12-01T06:26
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N93a47b3070ed48df82ae2350b1b8cffd
75 schema:url https://doi.org/10.1007/s11306-007-0099-6
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N06caa802c4324920a03eb5e27feaa59b rdf:first sg:person.0603527131.88
80 rdf:rest rdf:nil
81 N17b8bd6019e545fdbce21d8b852577b2 rdf:first sg:person.01136251671.60
82 rdf:rest Na955f71839fb42ff84168c9f66e41759
83 N246cb1b56a5849259ca165493db7a322 schema:name doi
84 schema:value 10.1007/s11306-007-0099-6
85 rdf:type schema:PropertyValue
86 N2a1730e679ec4ab0b8ac789acafaa633 schema:affiliation grid-institutes:grid.10761.31
87 schema:familyName van Duijnhoven
88 schema:givenName John P. M.
89 rdf:type schema:Person
90 N3b0f67ad4e294554b50180e177f9a281 rdf:first sg:person.012737547773.76
91 rdf:rest N44f57fd376af456fbf3cb8c841af3b62
92 N44f57fd376af456fbf3cb8c841af3b62 rdf:first sg:person.01077534437.36
93 rdf:rest N7108822863eb43be9b98931f3c5e9152
94 N49f49fece9714e218146ae8d0c10c22e schema:name dimensions_id
95 schema:value pub.1022973183
96 rdf:type schema:PropertyValue
97 N5d91c990eb534aaabef32ab45b9e32cb rdf:first sg:person.01337442505.96
98 rdf:rest N3b0f67ad4e294554b50180e177f9a281
99 N7108822863eb43be9b98931f3c5e9152 rdf:first sg:person.0716231256.30
100 rdf:rest N8c3567adbc5b4663b7e843ab7f734198
101 N7f57417a3a0d4415b9f7a8627eeba482 schema:volumeNumber 4
102 rdf:type schema:PublicationVolume
103 N8c3567adbc5b4663b7e843ab7f734198 rdf:first sg:person.01341630104.21
104 rdf:rest N17b8bd6019e545fdbce21d8b852577b2
105 N93a47b3070ed48df82ae2350b1b8cffd schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Na955f71839fb42ff84168c9f66e41759 rdf:first N2a1730e679ec4ab0b8ac789acafaa633
108 rdf:rest N06caa802c4324920a03eb5e27feaa59b
109 Nf7a8ee30515f44d39f79160f6c5d331f schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
112 schema:name Chemical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
115 schema:name Analytical Chemistry
116 rdf:type schema:DefinedTerm
117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biological Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biochemistry and Cell Biology
122 rdf:type schema:DefinedTerm
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
127 schema:name Clinical Sciences
128 rdf:type schema:DefinedTerm
129 sg:journal.1036887 schema:issn 1573-3882
130 1573-3890
131 schema:name Metabolomics
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.01077534437.36 schema:affiliation grid-institutes:None
135 schema:familyName Smit
136 schema:givenName Suzanne
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077534437.36
138 rdf:type schema:Person
139 sg:person.01136251671.60 schema:affiliation grid-institutes:grid.10761.31
140 schema:familyName van Velzen
141 schema:givenName Ewoud J. J.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136251671.60
143 rdf:type schema:Person
144 sg:person.012737547773.76 schema:affiliation grid-institutes:None
145 schema:familyName Hoefsloot
146 schema:givenName Huub C. J.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737547773.76
148 rdf:type schema:Person
149 sg:person.01337442505.96 schema:affiliation grid-institutes:None
150 schema:familyName Westerhuis
151 schema:givenName Johan A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337442505.96
153 rdf:type schema:Person
154 sg:person.01341630104.21 schema:affiliation grid-institutes:None
155 schema:familyName Smilde
156 schema:givenName Age K.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341630104.21
158 rdf:type schema:Person
159 sg:person.0603527131.88 schema:affiliation grid-institutes:grid.10761.31
160 schema:familyName van Dorsten
161 schema:givenName Ferdi A.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603527131.88
163 rdf:type schema:Person
164 sg:person.0716231256.30 schema:affiliation grid-institutes:None
165 schema:familyName Vis
166 schema:givenName Daniel J.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716231256.30
168 rdf:type schema:Person
169 sg:pub.10.1007/11503415_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025767553
170 https://doi.org/10.1007/11503415_34
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-1-4757-3449-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047768762
173 https://doi.org/10.1007/978-1-4757-3449-2
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
176 https://doi.org/10.1007/bf00058655
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10295-005-0231-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017701472
179 https://doi.org/10.1007/s10295-005-0231-4
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11306-006-0022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012538768
182 https://doi.org/10.1007/s11306-006-0022-6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s11306-006-0037-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014281361
185 https://doi.org/10.1007/s11306-006-0037-z
186 rdf:type schema:CreativeWork
187 sg:pub.10.1023/a:1013713905833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027843923
188 https://doi.org/10.1023/a:1013713905833
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature04648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026508206
191 https://doi.org/10.1038/nature04648
192 rdf:type schema:CreativeWork
193 grid-institutes:None schema:alternateName Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland
194 schema:name Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland
195 rdf:type schema:Organization
196 grid-institutes:grid.10761.31 schema:alternateName Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands
197 schema:name Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherland
198 Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...