A non-directed approach to the differential analysis of multiple LC–MS-derived metabolic profiles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-04

AUTHORS

O. Vorst, C. H. R. de Vos, A. Lommen, R. V. Staps, R. G. F. Visser, R. J. Bino, R. D. Hall

ABSTRACT

An essential element of any strategy for non-targeted metabolomics analysis of complex biological extracts is the capacity to perform comparisons between large numbers of samples. As the most widely used technologies are all based on mass spectrometry (e.g. GCMS, LCMS), this entails that we must be able to compare reliably and (semi)automatically large series of chromatographic mass spectra from which compositional differences are to be extracted in a statistically justifiable manner. In this paper we describe a novel approach for the extraction of relevant information from multiple full-scan metabolic profiles derived from LC–MS analyses. Specifically-designed software has made it possible to combine all mass peaks on the basis of retention time and m/z values only, without prior identification, to produce a data matrix output which can then be used for multivariate statistical analysis. To demonstrate the capacity of this approach, aqueous methanol extracts from potato tuber tissues of eight contrasting genotypes, harvested at two developmental stages have been used. Our results showed that it is possible to discover reproducibly discriminatory mass peaks related both to the genetic origin of the material as well as the developmental stage at which it was harvested. In addition the limitations of the approach are explored by a careful evaluation of the alignment quality. More... »

PAGES

169-180

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-005-4432-7

DOI

http://dx.doi.org/10.1007/s11306-005-4432-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013554060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorst", 
        "givenName": "O.", 
        "id": "sg:person.01121770366.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121770366.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vos", 
        "givenName": "C. H. R. de", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKILT-Institute of Food Safety, PO Box 230, 6700 AE, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands", 
            "RIKILT-Institute of Food Safety, PO Box 230, 6700 AE, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lommen", 
        "givenName": "A.", 
        "id": "sg:person.0713030357.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713030357.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staps", 
        "givenName": "R. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Plant Breeding, PO Box 386, 6700 AJ, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory of Plant Breeding, PO Box 386, 6700 AJ, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visser", 
        "givenName": "R. G. F.", 
        "id": "sg:person.07374343732.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Plant Physiology, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands", 
            "Laboratory of Plant Physiology, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bino", 
        "givenName": "R. J.", 
        "id": "sg:person.0667062740.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667062740.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.450019.9", 
          "name": [
            "Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands", 
            "Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "R. D.", 
        "id": "sg:person.0704576323.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1008398321079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049402338", 
          "https://doi.org/10.1023/a:1008398321079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013734019946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013479149", 
          "https://doi.org/10.1023/a:1013734019946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051079961", 
          "https://doi.org/10.1038/nrm1451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045090002", 
          "https://doi.org/10.1038/81137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013713905833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027843923", 
          "https://doi.org/10.1023/a:1013713905833"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-04", 
    "datePublishedReg": "2005-04-01", 
    "description": "An essential element of any strategy for non-targeted metabolomics analysis of complex biological extracts is the capacity to perform comparisons between large numbers of samples. As the most widely used technologies are all based on mass spectrometry (e.g. GCMS, LCMS), this entails that we must be able to compare reliably and (semi)automatically large series of chromatographic mass spectra from which compositional differences are to be extracted in a statistically justifiable manner. In this paper we describe a novel approach for the extraction of relevant information from multiple full-scan metabolic profiles derived from LC\u2013MS analyses. Specifically-designed software has made it possible to combine all mass peaks on the basis of retention time and m/z values only, without prior identification, to produce a data matrix output which can then be used for multivariate statistical analysis. To demonstrate the capacity of this approach, aqueous methanol extracts from potato tuber tissues of eight contrasting genotypes, harvested at two developmental stages have been used. Our results showed that it is possible to discover reproducibly discriminatory mass peaks related both to the genetic origin of the material as well as the developmental stage at which it was harvested. In addition the limitations of the approach are explored by a careful evaluation of the alignment quality.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11306-005-4432-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "multivariate statistical analysis", 
      "justifiable manner", 
      "matrix output", 
      "statistical analysis", 
      "large number", 
      "approach", 
      "alignment quality", 
      "differential analysis", 
      "novel approach", 
      "relevant information", 
      "analysis", 
      "number", 
      "technology", 
      "information", 
      "software", 
      "prior identification", 
      "output", 
      "essential elements", 
      "elements", 
      "strategies", 
      "comparison", 
      "series", 
      "manner", 
      "extraction", 
      "basis", 
      "time", 
      "values", 
      "identification", 
      "results", 
      "limitations", 
      "evaluation", 
      "quality", 
      "capacity", 
      "spectra", 
      "profile", 
      "stage", 
      "origin", 
      "addition", 
      "non-targeted metabolomics analysis", 
      "complex biological extracts", 
      "biological extracts", 
      "samples", 
      "mass spectrometry", 
      "mass spectra", 
      "differences", 
      "LC-MS analysis", 
      "mass peaks", 
      "peak", 
      "potato tuber tissue", 
      "tuber tissue", 
      "developmental stages", 
      "genetic origin", 
      "materials", 
      "careful evaluation", 
      "multiple LC-MS", 
      "LC-MS", 
      "metabolomic analysis", 
      "extracts", 
      "spectrometry", 
      "large series", 
      "compositional differences", 
      "paper", 
      "metabolic profile", 
      "retention time", 
      "aqueous methanol extract", 
      "methanol extract", 
      "tissue", 
      "genotypes", 
      "non-direct approach", 
      "chromatographic mass spectra", 
      "multiple full-scan metabolic profiles", 
      "full-scan metabolic profiles", 
      "data matrix output", 
      "discriminatory mass peaks"
    ], 
    "name": "A non-directed approach to the differential analysis of multiple LC\u2013MS-derived metabolic profiles", 
    "pagination": "169-180", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013554060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-005-4432-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-005-4432-7", 
      "https://app.dimensions.ai/details/publication/pub.1013554060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_405.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11306-005-4432-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4432-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4432-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4432-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4432-7'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      22 PREDICATES      105 URIs      92 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-005-4432-7 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N43fc3d0288dc4a79923a994176747e7f
4 schema:citation sg:pub.10.1023/a:1008398321079
5 sg:pub.10.1023/a:1013713905833
6 sg:pub.10.1023/a:1013734019946
7 sg:pub.10.1038/81137
8 sg:pub.10.1038/nrm1451
9 schema:datePublished 2005-04
10 schema:datePublishedReg 2005-04-01
11 schema:description An essential element of any strategy for non-targeted metabolomics analysis of complex biological extracts is the capacity to perform comparisons between large numbers of samples. As the most widely used technologies are all based on mass spectrometry (e.g. GCMS, LCMS), this entails that we must be able to compare reliably and (semi)automatically large series of chromatographic mass spectra from which compositional differences are to be extracted in a statistically justifiable manner. In this paper we describe a novel approach for the extraction of relevant information from multiple full-scan metabolic profiles derived from LC–MS analyses. Specifically-designed software has made it possible to combine all mass peaks on the basis of retention time and m/z values only, without prior identification, to produce a data matrix output which can then be used for multivariate statistical analysis. To demonstrate the capacity of this approach, aqueous methanol extracts from potato tuber tissues of eight contrasting genotypes, harvested at two developmental stages have been used. Our results showed that it is possible to discover reproducibly discriminatory mass peaks related both to the genetic origin of the material as well as the developmental stage at which it was harvested. In addition the limitations of the approach are explored by a careful evaluation of the alignment quality.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N56a31ded1d66401a95b73a5772bc5408
16 N99bf9a34a3a444ccb53826e104c781f2
17 sg:journal.1036887
18 schema:keywords LC-MS
19 LC-MS analysis
20 addition
21 alignment quality
22 analysis
23 approach
24 aqueous methanol extract
25 basis
26 biological extracts
27 capacity
28 careful evaluation
29 chromatographic mass spectra
30 comparison
31 complex biological extracts
32 compositional differences
33 data matrix output
34 developmental stages
35 differences
36 differential analysis
37 discriminatory mass peaks
38 elements
39 essential elements
40 evaluation
41 extraction
42 extracts
43 full-scan metabolic profiles
44 genetic origin
45 genotypes
46 identification
47 information
48 justifiable manner
49 large number
50 large series
51 limitations
52 manner
53 mass peaks
54 mass spectra
55 mass spectrometry
56 materials
57 matrix output
58 metabolic profile
59 metabolomic analysis
60 methanol extract
61 multiple LC-MS
62 multiple full-scan metabolic profiles
63 multivariate statistical analysis
64 non-direct approach
65 non-targeted metabolomics analysis
66 novel approach
67 number
68 origin
69 output
70 paper
71 peak
72 potato tuber tissue
73 prior identification
74 profile
75 quality
76 relevant information
77 results
78 retention time
79 samples
80 series
81 software
82 spectra
83 spectrometry
84 stage
85 statistical analysis
86 strategies
87 technology
88 time
89 tissue
90 tuber tissue
91 values
92 schema:name A non-directed approach to the differential analysis of multiple LC–MS-derived metabolic profiles
93 schema:pagination 169-180
94 schema:productId N9883c33c2a0a4c48a3ee4c7379ca3089
95 Ne7562adca8f349cfbca7aab2bddc36d2
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013554060
97 https://doi.org/10.1007/s11306-005-4432-7
98 schema:sdDatePublished 2021-11-01T18:08
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Ndc6220e2ee5349e1aa90492d4a864e83
101 schema:url https://doi.org/10.1007/s11306-005-4432-7
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N02150759abc24c838e279d3e22be7e53 rdf:first sg:person.0713030357.17
106 rdf:rest N31649953c6e04b3aae5496733eddfe92
107 N166f7b88a2f94e50a3ef0385883f5477 schema:affiliation grid-institutes:grid.4818.5
108 schema:familyName Vos
109 schema:givenName C. H. R. de
110 rdf:type schema:Person
111 N31649953c6e04b3aae5496733eddfe92 rdf:first Nb10534042d68488791ec48fd8fcf8a8d
112 rdf:rest Nc3fdaaf34d514713b6d0436330c56202
113 N3d8dc00c8aae4076bc98fed579c329c3 rdf:first sg:person.0667062740.44
114 rdf:rest N55206ef735a14f7cb98afee9b3548780
115 N43fc3d0288dc4a79923a994176747e7f rdf:first sg:person.01121770366.85
116 rdf:rest Nc4a6ee6c0f9a4c6686f1a5fb6f54c3f3
117 N55206ef735a14f7cb98afee9b3548780 rdf:first sg:person.0704576323.20
118 rdf:rest rdf:nil
119 N56a31ded1d66401a95b73a5772bc5408 schema:volumeNumber 1
120 rdf:type schema:PublicationVolume
121 N9883c33c2a0a4c48a3ee4c7379ca3089 schema:name dimensions_id
122 schema:value pub.1013554060
123 rdf:type schema:PropertyValue
124 N99bf9a34a3a444ccb53826e104c781f2 schema:issueNumber 2
125 rdf:type schema:PublicationIssue
126 Nb10534042d68488791ec48fd8fcf8a8d schema:affiliation grid-institutes:grid.4818.5
127 schema:familyName Staps
128 schema:givenName R. V.
129 rdf:type schema:Person
130 Nc3fdaaf34d514713b6d0436330c56202 rdf:first sg:person.07374343732.28
131 rdf:rest N3d8dc00c8aae4076bc98fed579c329c3
132 Nc4a6ee6c0f9a4c6686f1a5fb6f54c3f3 rdf:first N166f7b88a2f94e50a3ef0385883f5477
133 rdf:rest N02150759abc24c838e279d3e22be7e53
134 Ndc6220e2ee5349e1aa90492d4a864e83 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Ne7562adca8f349cfbca7aab2bddc36d2 schema:name doi
137 schema:value 10.1007/s11306-005-4432-7
138 rdf:type schema:PropertyValue
139 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
140 schema:name Chemical Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
143 schema:name Analytical Chemistry
144 rdf:type schema:DefinedTerm
145 sg:journal.1036887 schema:issn 1573-3882
146 1573-3890
147 schema:name Metabolomics
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01121770366.85 schema:affiliation grid-institutes:grid.4818.5
151 schema:familyName Vorst
152 schema:givenName O.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121770366.85
154 rdf:type schema:Person
155 sg:person.0667062740.44 schema:affiliation grid-institutes:grid.4818.5
156 schema:familyName Bino
157 schema:givenName R. J.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667062740.44
159 rdf:type schema:Person
160 sg:person.0704576323.20 schema:affiliation grid-institutes:grid.450019.9
161 schema:familyName Hall
162 schema:givenName R. D.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20
164 rdf:type schema:Person
165 sg:person.0713030357.17 schema:affiliation grid-institutes:grid.4818.5
166 schema:familyName Lommen
167 schema:givenName A.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713030357.17
169 rdf:type schema:Person
170 sg:person.07374343732.28 schema:affiliation grid-institutes:None
171 schema:familyName Visser
172 schema:givenName R. G. F.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374343732.28
174 rdf:type schema:Person
175 sg:pub.10.1023/a:1008398321079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049402338
176 https://doi.org/10.1023/a:1008398321079
177 rdf:type schema:CreativeWork
178 sg:pub.10.1023/a:1013713905833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027843923
179 https://doi.org/10.1023/a:1013713905833
180 rdf:type schema:CreativeWork
181 sg:pub.10.1023/a:1013734019946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013479149
182 https://doi.org/10.1023/a:1013734019946
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/81137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090002
185 https://doi.org/10.1038/81137
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nrm1451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051079961
188 https://doi.org/10.1038/nrm1451
189 rdf:type schema:CreativeWork
190 grid-institutes:None schema:alternateName Laboratory of Plant Breeding, PO Box 386, 6700 AJ, Wageningen, The Netherlands
191 schema:name Laboratory of Plant Breeding, PO Box 386, 6700 AJ, Wageningen, The Netherlands
192 rdf:type schema:Organization
193 grid-institutes:grid.450019.9 schema:alternateName Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB, Wageningen, The Netherlands
194 schema:name Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB, Wageningen, The Netherlands
195 Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands
196 rdf:type schema:Organization
197 grid-institutes:grid.4818.5 schema:alternateName Laboratory of Plant Physiology, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, The Netherlands
198 Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands
199 RIKILT-Institute of Food Safety, PO Box 230, 6700 AE, Wageningen, The Netherlands
200 schema:name Laboratory of Plant Physiology, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, The Netherlands
201 Plant Research International, 6700 AA, PO Box 16, Wageningen, The Netherlands
202 RIKILT-Institute of Food Safety, PO Box 230, 6700 AE, Wageningen, The Netherlands
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...