NMR-derived developmental metabolic trajectories: an approach for visualizing the toxic actions of trichloroethylene during embryogenesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-04

AUTHORS

Mark R. Viant, Jacob G. Bundy, Christopher A. Pincetich, Jeffrey S. de Ropp, Ronald S. Tjeerdema

ABSTRACT

Fish embryo toxicity tests for chemical risk assessment have traditionally been based upon non-specific endpoints including morphological abnormalities, hatching success, and mortality. Here we extend the application of 1H NMR-based metabolomics in environmental toxicology by adding a suite of metabolic endpoints to the Japanese medaka (Oryzias latipes) embryo assay, with the goal to provide more sensitive, specific and unbiased biomarkers of toxicity. Medaka were exposed throughout embryogenesis to five concentrations of trichloroethylene (TCE; 0, 8.76, 21.9, 43.8, 87.6, 175 mg/L) and the relative sensitivities of the traditional and metabolomic endpoints compared. While the no-observable-adverse-effect-level for hatching success, the most sensitive traditional indicator, was 164 mg/L TCE, metabolic perturbations were detected at all exposure concentrations. Principal components analysis (PCA) highlighted a dose-response relationship between the NMR spectra of medaka extracts. In addition, 12 metabolites that exhibited highly significant dose-response relationships were identified, which indicated an energetic cost to TCE exposure. Next, embryos were exposed to 0, 0.88, 8.76 mg/L TCE and sampled on each of the 8 days of development. Projections of 66 two-dimensional J-resolved NMR spectra were obtained, and PCA revealed developmental metabolic trajectories that characterized the basal and TCE-perturbed changes in the entire NMR-visible metabolome throughout embryogenesis. Although no significant increases in mortality, gross deformity or developmental retardation were observed relative to the control group, TCE-induced metabolic perturbations were observed on day 8. In conclusion, these results support the continued development of NMR-based metabolomics as a rapid and reproducible tool for biomarker discovery and environmental risk assessment. More... »

PAGES

149-158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-005-4429-2

DOI

http://dx.doi.org/10.1007/s11306-005-4429-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002168056


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, The University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viant", 
        "givenName": "Mark R.", 
        "id": "sg:person.01140655554.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Environmental Toxicology, University of California, One Shields Avenue, 95616, Davis, CA, USA", 
            "Biochemistry Department, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bundy", 
        "givenName": "Jacob G.", 
        "id": "sg:person.0620064340.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620064340.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Environmental Toxicology, University of California, One Shields Avenue, 95616, Davis, CA, USA", 
            "Pacific EcoRisk, 835 Arnold Drive, Suite 104, 94533, Martinez, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pincetich", 
        "givenName": "Christopher A.", 
        "id": "sg:person.01261622114.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261622114.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "NMR Facility, University of California, One Shields Avenue, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Ropp", 
        "givenName": "Jeffrey S.", 
        "id": "sg:person.01336333670.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336333670.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Environmental Toxicology, University of California, One Shields Avenue, 95616, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tjeerdema", 
        "givenName": "Ronald S.", 
        "id": "sg:person.01273346045.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273346045.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/20018091094574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000225343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cca.2005.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004107040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0491(00)00276-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006197965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0300-483x(99)00083-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009338992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1095/biolreprod.103.022210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012530467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2004.02.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012618043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marenvres.2004.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015557747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)00764-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017301349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/105172301316871572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018067690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-445x(94)00059-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020261596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022502205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.09.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022502205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034281x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026818092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034281x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026818092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aquatox.2003.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028728835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tox.2004.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029312585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030526247", 
          "https://doi.org/10.1038/nrd728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030526247", 
          "https://doi.org/10.1038/nrd728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:fish.0000035938.92027.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033711516", 
          "https://doi.org/10.1023/b:fish.0000035938.92027.81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620061004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034181242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620061004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034181242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02733666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035526311", 
          "https://doi.org/10.1007/bf02733666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02733666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035526311", 
          "https://doi.org/10.1007/bf02733666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041453719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2003.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045870694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2003.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045870694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/tx0255774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056297593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/tx0255774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056297593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/1536231041388348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059215071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1897/1551-5028(2002)021<1966:maotof>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068725885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1897/1551-5028(2003)22<1487:ffltft>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068726022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1897/1552-8618(1987)6[747:dtofma]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068726168"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-04", 
    "datePublishedReg": "2005-04-01", 
    "description": "Fish embryo toxicity tests for chemical risk assessment have traditionally been based upon non-specific endpoints including morphological abnormalities, hatching success, and mortality. Here we extend the application of 1H NMR-based metabolomics in environmental toxicology by adding a suite of metabolic endpoints to the Japanese medaka (Oryzias latipes) embryo assay, with the goal to provide more sensitive, specific and unbiased biomarkers of toxicity. Medaka were exposed throughout embryogenesis to five concentrations of trichloroethylene (TCE; 0, 8.76, 21.9, 43.8, 87.6, 175 mg/L) and the relative sensitivities of the traditional and metabolomic endpoints compared. While the no-observable-adverse-effect-level for hatching success, the most sensitive traditional indicator, was 164 mg/L TCE, metabolic perturbations were detected at all exposure concentrations. Principal components analysis (PCA) highlighted a dose-response relationship between the NMR spectra of medaka extracts. In addition, 12 metabolites that exhibited highly significant dose-response relationships were identified, which indicated an energetic cost to TCE exposure. Next, embryos were exposed to 0, 0.88, 8.76 mg/L TCE and sampled on each of the 8 days of development. Projections of 66 two-dimensional J-resolved NMR spectra were obtained, and PCA revealed developmental metabolic trajectories that characterized the basal and TCE-perturbed changes in the entire NMR-visible metabolome throughout embryogenesis. Although no significant increases in mortality, gross deformity or developmental retardation were observed relative to the control group, TCE-induced metabolic perturbations were observed on day 8. In conclusion, these results support the continued development of NMR-based metabolomics as a rapid and reproducible tool for biomarker discovery and environmental risk assessment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-005-4429-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "NMR-derived developmental metabolic trajectories: an approach for visualizing the toxic actions of trichloroethylene during embryogenesis", 
    "pagination": "149-158", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a52d97ef19ddbb8b8a2f9f643fe2d8d024c9a29e5c9f9d01e160231823f647d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-005-4429-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002168056"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-005-4429-2", 
      "https://app.dimensions.ai/details/publication/pub.1002168056"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64094_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11306-005-4429-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4429-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4429-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4429-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-4429-2'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-005-4429-2 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Na79916ac0e7c4a12899ce6265974addd
4 schema:citation sg:pub.10.1007/bf02733666
5 sg:pub.10.1023/b:fish.0000035938.92027.81
6 sg:pub.10.1038/nrd728
7 https://doi.org/10.1002/etc.5620061004
8 https://doi.org/10.1016/0166-445x(94)00059-y
9 https://doi.org/10.1016/j.aca.2004.02.068
10 https://doi.org/10.1016/j.aquatox.2003.11.011
11 https://doi.org/10.1016/j.bbrc.2003.09.092
12 https://doi.org/10.1016/j.cbpa.2003.08.008
13 https://doi.org/10.1016/j.cca.2005.01.010
14 https://doi.org/10.1016/j.marenvres.2004.03.014
15 https://doi.org/10.1016/j.tox.2004.06.014
16 https://doi.org/10.1016/s0021-9673(00)00764-0
17 https://doi.org/10.1016/s0300-483x(99)00083-9
18 https://doi.org/10.1016/s0305-0491(00)00276-5
19 https://doi.org/10.1021/es034281x
20 https://doi.org/10.1021/tx0255774
21 https://doi.org/10.1080/105172301316871572
22 https://doi.org/10.1080/20018091094574
23 https://doi.org/10.1089/1536231041388348
24 https://doi.org/10.1093/bioinformatics/btg202
25 https://doi.org/10.1095/biolreprod.103.022210
26 https://doi.org/10.1897/1551-5028(2002)021<1966:maotof>2.0.co;2
27 https://doi.org/10.1897/1551-5028(2003)22<1487:ffltft>2.0.co;2
28 https://doi.org/10.1897/1552-8618(1987)6[747:dtofma]2.0.co;2
29 schema:datePublished 2005-04
30 schema:datePublishedReg 2005-04-01
31 schema:description Fish embryo toxicity tests for chemical risk assessment have traditionally been based upon non-specific endpoints including morphological abnormalities, hatching success, and mortality. Here we extend the application of 1H NMR-based metabolomics in environmental toxicology by adding a suite of metabolic endpoints to the Japanese medaka (Oryzias latipes) embryo assay, with the goal to provide more sensitive, specific and unbiased biomarkers of toxicity. Medaka were exposed throughout embryogenesis to five concentrations of trichloroethylene (TCE; 0, 8.76, 21.9, 43.8, 87.6, 175 mg/L) and the relative sensitivities of the traditional and metabolomic endpoints compared. While the no-observable-adverse-effect-level for hatching success, the most sensitive traditional indicator, was 164 mg/L TCE, metabolic perturbations were detected at all exposure concentrations. Principal components analysis (PCA) highlighted a dose-response relationship between the NMR spectra of medaka extracts. In addition, 12 metabolites that exhibited highly significant dose-response relationships were identified, which indicated an energetic cost to TCE exposure. Next, embryos were exposed to 0, 0.88, 8.76 mg/L TCE and sampled on each of the 8 days of development. Projections of 66 two-dimensional J-resolved NMR spectra were obtained, and PCA revealed developmental metabolic trajectories that characterized the basal and TCE-perturbed changes in the entire NMR-visible metabolome throughout embryogenesis. Although no significant increases in mortality, gross deformity or developmental retardation were observed relative to the control group, TCE-induced metabolic perturbations were observed on day 8. In conclusion, these results support the continued development of NMR-based metabolomics as a rapid and reproducible tool for biomarker discovery and environmental risk assessment.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N3a30d3a19d3d409f902cda0115d237f8
36 N735c5af3e5f64b269824a5e4838712bd
37 sg:journal.1036887
38 schema:name NMR-derived developmental metabolic trajectories: an approach for visualizing the toxic actions of trichloroethylene during embryogenesis
39 schema:pagination 149-158
40 schema:productId N4a7d70d7f3d849d8aa49e0fc76587803
41 Nbf3d16976cb44950b2533ef1cdd47346
42 Ne1237f0630694bdeb340513f6253091b
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168056
44 https://doi.org/10.1007/s11306-005-4429-2
45 schema:sdDatePublished 2019-04-11T09:24
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nd417bf0ce92d40cfb82760a2cec31037
48 schema:url http://link.springer.com/10.1007%2Fs11306-005-4429-2
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N17f53300cfb04314856e349dab197ef1 rdf:first sg:person.01261622114.83
53 rdf:rest N3ec0899277f949ba8a597c6e5a9e177c
54 N3a30d3a19d3d409f902cda0115d237f8 schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 N3ec0899277f949ba8a597c6e5a9e177c rdf:first sg:person.01336333670.29
57 rdf:rest Nb8970f94fbc942528bc32596d24a89d5
58 N4a7d70d7f3d849d8aa49e0fc76587803 schema:name doi
59 schema:value 10.1007/s11306-005-4429-2
60 rdf:type schema:PropertyValue
61 N735c5af3e5f64b269824a5e4838712bd schema:volumeNumber 1
62 rdf:type schema:PublicationVolume
63 N897572b396cd4f0786a2f6253c530f34 rdf:first sg:person.0620064340.88
64 rdf:rest N17f53300cfb04314856e349dab197ef1
65 Na79916ac0e7c4a12899ce6265974addd rdf:first sg:person.01140655554.38
66 rdf:rest N897572b396cd4f0786a2f6253c530f34
67 Nb8970f94fbc942528bc32596d24a89d5 rdf:first sg:person.01273346045.13
68 rdf:rest rdf:nil
69 Nbf3d16976cb44950b2533ef1cdd47346 schema:name dimensions_id
70 schema:value pub.1002168056
71 rdf:type schema:PropertyValue
72 Nd417bf0ce92d40cfb82760a2cec31037 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ne1237f0630694bdeb340513f6253091b schema:name readcube_id
75 schema:value 0a52d97ef19ddbb8b8a2f9f643fe2d8d024c9a29e5c9f9d01e160231823f647d
76 rdf:type schema:PropertyValue
77 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
78 schema:name Environmental Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
81 schema:name Environmental Science and Management
82 rdf:type schema:DefinedTerm
83 sg:journal.1036887 schema:issn 1573-3882
84 1573-3890
85 schema:name Metabolomics
86 rdf:type schema:Periodical
87 sg:person.01140655554.38 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
88 schema:familyName Viant
89 schema:givenName Mark R.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38
91 rdf:type schema:Person
92 sg:person.01261622114.83 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
93 schema:familyName Pincetich
94 schema:givenName Christopher A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261622114.83
96 rdf:type schema:Person
97 sg:person.01273346045.13 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
98 schema:familyName Tjeerdema
99 schema:givenName Ronald S.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273346045.13
101 rdf:type schema:Person
102 sg:person.01336333670.29 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
103 schema:familyName de Ropp
104 schema:givenName Jeffrey S.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336333670.29
106 rdf:type schema:Person
107 sg:person.0620064340.88 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
108 schema:familyName Bundy
109 schema:givenName Jacob G.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620064340.88
111 rdf:type schema:Person
112 sg:pub.10.1007/bf02733666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035526311
113 https://doi.org/10.1007/bf02733666
114 rdf:type schema:CreativeWork
115 sg:pub.10.1023/b:fish.0000035938.92027.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711516
116 https://doi.org/10.1023/b:fish.0000035938.92027.81
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nrd728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030526247
119 https://doi.org/10.1038/nrd728
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/etc.5620061004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034181242
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0166-445x(94)00059-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020261596
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.aca.2004.02.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012618043
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.aquatox.2003.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028728835
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.bbrc.2003.09.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022502205
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.cbpa.2003.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045870694
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.cca.2005.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004107040
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.marenvres.2004.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015557747
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.tox.2004.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029312585
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0021-9673(00)00764-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017301349
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0300-483x(99)00083-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009338992
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0305-0491(00)00276-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006197965
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/es034281x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026818092
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/tx0255774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056297593
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/105172301316871572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018067690
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/20018091094574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000225343
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1089/1536231041388348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059215071
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/btg202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041453719
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1095/biolreprod.103.022210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012530467
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1897/1551-5028(2002)021<1966:maotof>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068725885
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1897/1551-5028(2003)22<1487:ffltft>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068726022
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1897/1552-8618(1987)6[747:dtofma]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068726168
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
166 schema:name Department of Environmental Toxicology, University of California, One Shields Avenue, 95616, Davis, CA, USA
167 NMR Facility, University of California, One Shields Avenue, 95616, Davis, CA, USA
168 Pacific EcoRisk, 835 Arnold Drive, Suite 104, 94533, Martinez, CA, USA
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
171 schema:name Biochemistry Department, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
172 Department of Environmental Toxicology, University of California, One Shields Avenue, 95616, Davis, CA, USA
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
175 schema:name School of Biosciences, The University of Birmingham, B15 2TT, Birmingham, UK
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...