Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-07

AUTHORS

Louise C. Kenny, Warwick B. Dunn, David I. Ellis, Jenny Myers, Philip N. Baker, GOPEC Consortium, Douglas B. Kell

ABSTRACT

Pre-eclampsia is a multi-system disorder of pregnancy with major maternal and perinatal implications. Emerging therapeutic strategies are most likely to be maximally effective if commenced weeks or even months prior to the clinical presentation of the disease. Although widespread plasma alterations precede the clinical onset of pre-eclampsia, no single plasma constituent has emerged as a sensitive or specific predictor of risk. Consequently, currently available methods of identifying the condition prior to clinical presentation are of limited clinical use. We have exploited genetic programming, a powerful data mining method, to identify patterns of metabolites that distinguish plasma from patients with pre-eclampsia from that taken from healthy, matched controls. High-resolution gas chromatography time-of-flight mass spectrometry (GC-tof-MS) was performed on 87 plasma samples from women with pre-eclampsia and 87 matched controls. Normalised peak intensity data were fed into the Genetic Programming (GP) system which was set up to produce a model that gave an output of 1 for patients and 0 for controls. The model was trained on 50% of the data generated and tested on a separate hold-out set of 50%. The model generated by GP from the GC-tof-MS data identified a metabolomic pattern that could be used to produce two simple rules that together discriminate pre-eclampsia from normal pregnant controls using just 3 of the metabolite peak variables, with a sensitivity of 100% and a specificity of 98%. Thus, pre-eclampsia can be diagnosed at the level of small-molecule metabolism in blood plasma. These findings justify a prospective assessment of metabolomic technology as a screening tool for pre-eclampsia, while identification of the metabolites involved may lead to an improved understanding of the aetiological basis of pre-eclampsia and thus the development of targeted therapies. More... »

PAGES

227

References to SciGraph publications

Journal

TITLE

Metabolomics

ISSUE

3

VOLUME

1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11306-005-0003-1

DOI

http://dx.doi.org/10.1007/s11306-005-0003-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042190866


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "The Maternal and Fetal Health Research Centre, University of Manchester, St Mary\u2019s Hospital, Whitworth Park, M13 0JH, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kenny", 
        "givenName": "Louise C.", 
        "id": "sg:person.0702354555.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702354555.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Chemistry, University of Manchester, Faraday Building, Sackville Street, PO Box 88, M60 1QD, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunn", 
        "givenName": "Warwick B.", 
        "id": "sg:person.01042634342.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042634342.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Chemistry, University of Manchester, Faraday Building, Sackville Street, PO Box 88, M60 1QD, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellis", 
        "givenName": "David I.", 
        "id": "sg:person.0707632661.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707632661.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "The Maternal and Fetal Health Research Centre, University of Manchester, St Mary\u2019s Hospital, Whitworth Park, M13 0JH, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myers", 
        "givenName": "Jenny", 
        "id": "sg:person.012455071422.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012455071422.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "The Maternal and Fetal Health Research Centre, University of Manchester, St Mary\u2019s Hospital, Whitworth Park, M13 0JH, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baker", 
        "givenName": "Philip N.", 
        "id": "sg:person.01111505377.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111505377.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "GOPEC Consortium", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Chemistry, University of Manchester, Faraday Building, Sackville Street, PO Box 88, M60 1QD, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kell", 
        "givenName": "Douglas B.", 
        "id": "sg:person.01032405132.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032405132.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1079/bjn20041243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000020850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.6.2822-2828.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000142468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-4072-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003176614", 
          "https://doi.org/10.1007/978-94-011-4072-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2004.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005815150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(02)02765-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005841884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9378(88)80169-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006556298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006562851", 
          "https://doi.org/10.1038/nature01991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006562851", 
          "https://doi.org/10.1038/nature01991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs1030067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008609346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs1030067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008609346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(98)01214-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008971544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-005-1106-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010950797", 
          "https://doi.org/10.1007/s11306-005-1106-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/83496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011462196", 
          "https://doi.org/10.1038/83496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/83496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011462196", 
          "https://doi.org/10.1038/83496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.10385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013967499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.embor.embor944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014149708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9378(89)90665-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015932492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015986971", 
          "https://doi.org/10.1038/nrd1130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015986971", 
          "https://doi.org/10.1038/nrd1130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b418288j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022837755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2004.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025000244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2004.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025864363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0333-0_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027397723", 
          "https://doi.org/10.1007/978-1-4615-0333-0_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0333-0_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027397723", 
          "https://doi.org/10.1007/978-1-4615-0333-0_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.126.3.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027502181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1202-802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030228780", 
          "https://doi.org/10.1038/nm1202-802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1202-802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030228780", 
          "https://doi.org/10.1038/nm1202-802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pharmtox.41.1.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031863312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)88077-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033090454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.10.6157-6165.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034605784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1009213726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037292812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2004.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037967197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jpme.1998.26.3.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038778032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)07746-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039460391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4347(01)00100-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043561928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0330520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043845425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0330520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043845425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044547329", 
          "https://doi.org/10.1038/nrmicro1177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044547329", 
          "https://doi.org/10.1038/nrmicro1177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044547329", 
          "https://doi.org/10.1038/nrmicro1177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045090002", 
          "https://doi.org/10.1038/81137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045090002", 
          "https://doi.org/10.1038/81137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2004.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048770452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-0528.1991.tb13450.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051485344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-0528.1991.tb13450.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051485344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1071-5576(98)00044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054680020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac049146x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac049146x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20010354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056719205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107155769900600103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063953458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107155769900600103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063953458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074306262", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083330620", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-07", 
    "datePublishedReg": "2005-07-01", 
    "description": "Pre-eclampsia is a multi-system disorder of pregnancy with major maternal and perinatal implications. Emerging therapeutic strategies are most likely to be maximally effective if commenced weeks or even months prior to the clinical presentation of the disease. Although widespread plasma alterations precede the clinical onset of pre-eclampsia, no single plasma constituent has emerged as a sensitive or specific predictor of risk. Consequently, currently available methods of identifying the condition prior to clinical presentation are of limited clinical use. We have exploited genetic programming, a powerful data mining method, to identify patterns of metabolites that distinguish plasma from patients with pre-eclampsia from that taken from healthy, matched controls. High-resolution gas chromatography time-of-flight mass spectrometry (GC-tof-MS) was performed on 87 plasma samples from women with pre-eclampsia and 87 matched controls. Normalised peak intensity data were fed into the Genetic Programming (GP) system which was set up to produce a model that gave an output of 1 for patients and 0 for controls. The model was trained on 50% of the data generated and tested on a separate hold-out set of 50%. The model generated by GP from the GC-tof-MS data identified a metabolomic pattern that could be used to produce two simple rules that together discriminate pre-eclampsia from normal pregnant controls using just 3 of the metabolite peak variables, with a sensitivity of 100% and a specificity of 98%. Thus, pre-eclampsia can be diagnosed at the level of small-molecule metabolism in blood plasma. These findings justify a prospective assessment of metabolomic technology as a screening tool for pre-eclampsia, while identification of the metabolites involved may lead to an improved understanding of the aetiological basis of pre-eclampsia and thus the development of targeted therapies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11306-005-0003-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036887", 
        "issn": [
          "1573-3882", 
          "1573-3890"
        ], 
        "name": "Metabolomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning", 
    "pagination": "227", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c8fa088104d7ef4030d246cbf400e0b0a5ff03816e51110d4ba87351b5db060d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11306-005-0003-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042190866"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11306-005-0003-1", 
      "https://app.dimensions.ai/details/publication/pub.1042190866"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54014_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11306-005-0003-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-0003-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-0003-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-0003-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11306-005-0003-1'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11306-005-0003-1 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Nd4556551605c4cfa877ed37cd56085a4
4 schema:citation sg:pub.10.1007/978-1-4615-0333-0_7
5 sg:pub.10.1007/978-94-011-4072-0_1
6 sg:pub.10.1007/s11306-005-1106-4
7 sg:pub.10.1038/81137
8 sg:pub.10.1038/83496
9 sg:pub.10.1038/nature01991
10 sg:pub.10.1038/nm1202-802
11 sg:pub.10.1038/nrd1130
12 sg:pub.10.1038/nrmicro1177
13 https://app.dimensions.ai/details/publication/pub.1074306262
14 https://app.dimensions.ai/details/publication/pub.1083330620
15 https://doi.org/10.1002/bies.10385
16 https://doi.org/10.1016/0002-9378(89)90665-0
17 https://doi.org/10.1016/j.cbpa.2004.08.013
18 https://doi.org/10.1016/j.mib.2004.04.012
19 https://doi.org/10.1016/j.tibtech.2004.03.007
20 https://doi.org/10.1016/j.tplants.2004.07.004
21 https://doi.org/10.1016/j.trac.2004.11.021
22 https://doi.org/10.1016/s0002-9378(88)80169-8
23 https://doi.org/10.1016/s0021-9673(00)88077-2
24 https://doi.org/10.1016/s0140-6736(02)07746-2
25 https://doi.org/10.1016/s0167-7799(98)01214-1
26 https://doi.org/10.1016/s0168-9525(02)02765-8
27 https://doi.org/10.1016/s0378-4347(01)00100-1
28 https://doi.org/10.1016/s1071-5576(98)00044-6
29 https://doi.org/10.1021/ac049146x
30 https://doi.org/10.1038/sj.embor.embor944
31 https://doi.org/10.1039/b418288j
32 https://doi.org/10.1042/bst0330520
33 https://doi.org/10.1042/cs1030067
34 https://doi.org/10.1042/cs20010354
35 https://doi.org/10.1079/bjn20041243
36 https://doi.org/10.1104/pp.126.3.943
37 https://doi.org/10.1111/j.1471-0528.1991.tb13450.x
38 https://doi.org/10.1126/science.286.5439.531
39 https://doi.org/10.1128/aem.68.6.2822-2828.2002
40 https://doi.org/10.1128/aem.70.10.6157-6165.2004
41 https://doi.org/10.1146/annurev.pharmtox.41.1.347
42 https://doi.org/10.1177/107155769900600103
43 https://doi.org/10.1214/ss/1009213726
44 https://doi.org/10.1515/jpme.1998.26.3.137
45 schema:datePublished 2005-07
46 schema:datePublishedReg 2005-07-01
47 schema:description Pre-eclampsia is a multi-system disorder of pregnancy with major maternal and perinatal implications. Emerging therapeutic strategies are most likely to be maximally effective if commenced weeks or even months prior to the clinical presentation of the disease. Although widespread plasma alterations precede the clinical onset of pre-eclampsia, no single plasma constituent has emerged as a sensitive or specific predictor of risk. Consequently, currently available methods of identifying the condition prior to clinical presentation are of limited clinical use. We have exploited genetic programming, a powerful data mining method, to identify patterns of metabolites that distinguish plasma from patients with pre-eclampsia from that taken from healthy, matched controls. High-resolution gas chromatography time-of-flight mass spectrometry (GC-tof-MS) was performed on 87 plasma samples from women with pre-eclampsia and 87 matched controls. Normalised peak intensity data were fed into the Genetic Programming (GP) system which was set up to produce a model that gave an output of 1 for patients and 0 for controls. The model was trained on 50% of the data generated and tested on a separate hold-out set of 50%. The model generated by GP from the GC-tof-MS data identified a metabolomic pattern that could be used to produce two simple rules that together discriminate pre-eclampsia from normal pregnant controls using just 3 of the metabolite peak variables, with a sensitivity of 100% and a specificity of 98%. Thus, pre-eclampsia can be diagnosed at the level of small-molecule metabolism in blood plasma. These findings justify a prospective assessment of metabolomic technology as a screening tool for pre-eclampsia, while identification of the metabolites involved may lead to an improved understanding of the aetiological basis of pre-eclampsia and thus the development of targeted therapies.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N6dbfabf1e1aa441bbd1adf021d518026
52 N803667a29a044706a2111fbbcdc82f05
53 sg:journal.1036887
54 schema:name Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning
55 schema:pagination 227
56 schema:productId N22da5e67a77642df98d07326286aade6
57 N5759d1c208524d309159e980cd3ce294
58 Na7f2d807604b405eb3c20e500be87414
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042190866
60 https://doi.org/10.1007/s11306-005-0003-1
61 schema:sdDatePublished 2019-04-11T12:15
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N8afc8fe493c24fb29e7b74d024be8a88
64 schema:url http://link.springer.com/10.1007%2Fs11306-005-0003-1
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N1cdb647ff0564874aa5f98aacb54aa37 schema:familyName GOPEC Consortium
69 rdf:type schema:Person
70 N22da5e67a77642df98d07326286aade6 schema:name dimensions_id
71 schema:value pub.1042190866
72 rdf:type schema:PropertyValue
73 N3b0bd539056b4807a38f128620affb72 rdf:first N1cdb647ff0564874aa5f98aacb54aa37
74 rdf:rest Nda110fc1736541da946f83bbabef2984
75 N4ca2921ffbc54d57a4518b3d4d797d80 rdf:first sg:person.012455071422.50
76 rdf:rest N5a2f83384fc7440da1b373fe8ca003b7
77 N5759d1c208524d309159e980cd3ce294 schema:name doi
78 schema:value 10.1007/s11306-005-0003-1
79 rdf:type schema:PropertyValue
80 N5a2f83384fc7440da1b373fe8ca003b7 rdf:first sg:person.01111505377.31
81 rdf:rest N3b0bd539056b4807a38f128620affb72
82 N602947683fd946da90e01cfa3967d11d rdf:first sg:person.01042634342.49
83 rdf:rest Ncbb9c226cb6547f084e2f26dd7f4a494
84 N6dbfabf1e1aa441bbd1adf021d518026 schema:volumeNumber 1
85 rdf:type schema:PublicationVolume
86 N803667a29a044706a2111fbbcdc82f05 schema:issueNumber 3
87 rdf:type schema:PublicationIssue
88 N8afc8fe493c24fb29e7b74d024be8a88 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Na7f2d807604b405eb3c20e500be87414 schema:name readcube_id
91 schema:value c8fa088104d7ef4030d246cbf400e0b0a5ff03816e51110d4ba87351b5db060d
92 rdf:type schema:PropertyValue
93 Ncbb9c226cb6547f084e2f26dd7f4a494 rdf:first sg:person.0707632661.67
94 rdf:rest N4ca2921ffbc54d57a4518b3d4d797d80
95 Nd4556551605c4cfa877ed37cd56085a4 rdf:first sg:person.0702354555.62
96 rdf:rest N602947683fd946da90e01cfa3967d11d
97 Nda110fc1736541da946f83bbabef2984 rdf:first sg:person.01032405132.18
98 rdf:rest rdf:nil
99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
103 schema:name Analytical Chemistry
104 rdf:type schema:DefinedTerm
105 sg:journal.1036887 schema:issn 1573-3882
106 1573-3890
107 schema:name Metabolomics
108 rdf:type schema:Periodical
109 sg:person.01032405132.18 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
110 schema:familyName Kell
111 schema:givenName Douglas B.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032405132.18
113 rdf:type schema:Person
114 sg:person.01042634342.49 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
115 schema:familyName Dunn
116 schema:givenName Warwick B.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042634342.49
118 rdf:type schema:Person
119 sg:person.01111505377.31 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
120 schema:familyName Baker
121 schema:givenName Philip N.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111505377.31
123 rdf:type schema:Person
124 sg:person.012455071422.50 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
125 schema:familyName Myers
126 schema:givenName Jenny
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012455071422.50
128 rdf:type schema:Person
129 sg:person.0702354555.62 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
130 schema:familyName Kenny
131 schema:givenName Louise C.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702354555.62
133 rdf:type schema:Person
134 sg:person.0707632661.67 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
135 schema:familyName Ellis
136 schema:givenName David I.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707632661.67
138 rdf:type schema:Person
139 sg:pub.10.1007/978-1-4615-0333-0_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027397723
140 https://doi.org/10.1007/978-1-4615-0333-0_7
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-94-011-4072-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003176614
143 https://doi.org/10.1007/978-94-011-4072-0_1
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11306-005-1106-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010950797
146 https://doi.org/10.1007/s11306-005-1106-4
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/81137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090002
149 https://doi.org/10.1038/81137
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/83496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011462196
152 https://doi.org/10.1038/83496
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature01991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006562851
155 https://doi.org/10.1038/nature01991
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nm1202-802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228780
158 https://doi.org/10.1038/nm1202-802
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nrd1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015986971
161 https://doi.org/10.1038/nrd1130
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nrmicro1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044547329
164 https://doi.org/10.1038/nrmicro1177
165 rdf:type schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1074306262 schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1083330620 schema:CreativeWork
168 https://doi.org/10.1002/bies.10385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013967499
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0002-9378(89)90665-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015932492
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cbpa.2004.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025864363
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.mib.2004.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005815150
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.tibtech.2004.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037967197
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.tplants.2004.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048770452
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.trac.2004.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025000244
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0002-9378(88)80169-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006556298
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0021-9673(00)88077-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033090454
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0140-6736(02)07746-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039460391
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0167-7799(98)01214-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008971544
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0168-9525(02)02765-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005841884
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0378-4347(01)00100-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043561928
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s1071-5576(98)00044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054680020
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/ac049146x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054996415
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1038/sj.embor.embor944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014149708
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1039/b418288j schema:sameAs https://app.dimensions.ai/details/publication/pub.1022837755
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1042/bst0330520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043845425
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1042/cs1030067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008609346
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1042/cs20010354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056719205
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1079/bjn20041243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000020850
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1104/pp.126.3.943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027502181
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1471-0528.1991.tb13450.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051485344
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/aem.68.6.2822-2828.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000142468
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1128/aem.70.10.6157-6165.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034605784
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1146/annurev.pharmtox.41.1.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031863312
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1177/107155769900600103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063953458
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1214/ss/1009213726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037292812
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1515/jpme.1998.26.3.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038778032
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
229 schema:name School of Chemistry, University of Manchester, Faraday Building, Sackville Street, PO Box 88, M60 1QD, Manchester, UK
230 The Maternal and Fetal Health Research Centre, University of Manchester, St Mary’s Hospital, Whitworth Park, M13 0JH, Manchester, UK
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...