In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q. robur View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-02-28

AUTHORS

Hermine Alexandre, Laura Truffaut, Alexis Ducousso, Jean-Marc Louvet, Gérard Nepveu, José M. Torres-Ruiz, Frédéric Lagane, Cyril Firmat, Brigitte Musch, Sylvain Delzon, Antoine Kremer

ABSTRACT

Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. The aim of the current study was to estimate three genetic parameters (i.e., heritability, evolvability, and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological, and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology, and defense). First, we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits’ additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals; however, we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long-term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation. More... »

PAGES

32

References to SciGraph publications

  • 2007-01. Variation in wood volatile compounds in a mixed oak stand: strong species and spatial differentiation in whisky-lactone content in ANNALS OF FOREST SCIENCE
  • 1996. Comparison of morphological characters and molecular markers for the analysis of hybridization in sessile and pedunculate oak in ANNALES DES SCIENCES FORESTIÈRES
  • 1978-01. Possible biases in heritability estimates from intraclass correlation in THEORETICAL AND APPLIED GENETICS
  • 2011-06-21. Heritability is not Evolvability in EVOLUTIONARY BIOLOGY
  • 2007-08-29. Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. in TREE GENETICS & GENOMES
  • 2008-05. Sizing up human height variation in NATURE GENETICS
  • 2016-08-31. A new approach to prediction of the age-age correlation for use in tree breeding in ANNALS OF FOREST SCIENCE
  • 2008-01. Is evolvability evolvable? in NATURE REVIEWS GENETICS
  • 1992-11. Predictions of age-age correlations of total height based on serial correlations between height increments in Maritime pine (Pinus pinaster Ait.) in THEORETICAL AND APPLIED GENETICS
  • 1994-07. Intraspecific genetic structure in a mixed population of Quercus petraea (Matt.) Leibl and Q. robur L. in HEREDITY
  • 2013-01-06. The Evolution of Canalization and Evolvability in Stable and Fluctuating Environments in EVOLUTIONARY BIOLOGY
  • 2014-03-12. The Importance of Volatile Organic Compounds in Ecosystem Functioning in JOURNAL OF CHEMICAL ECOLOGY
  • 2008-03-04. Heritability in the genomics era — concepts and misconceptions in NATURE REVIEWS GENETICS
  • 1998-02-01. A novel method for estimating heritability using molecular markers in HEREDITY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11295-019-1407-9

    DOI

    http://dx.doi.org/10.1007/s11295-019-1407-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125131565

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32256274


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alexandre", 
            "givenName": "Hermine", 
            "id": "sg:person.01264163547.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264163547.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Truffaut", 
            "givenName": "Laura", 
            "id": "sg:person.015563053463.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563053463.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ducousso", 
            "givenName": "Alexis", 
            "id": "sg:person.01300463027.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300463027.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Louvet", 
            "givenName": "Jean-Marc", 
            "id": "sg:person.01052575724.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052575724.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UMR SILVA, INRA, 54280, Champenoux, France", 
              "id": "http://www.grid.ac/institutes/grid.507621.7", 
              "name": [
                "UMR SILVA, INRA, 54280, Champenoux, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nepveu", 
            "givenName": "G\u00e9rard", 
            "id": "sg:person.07611100303.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611100303.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torres-Ruiz", 
            "givenName": "Jos\u00e9 M.", 
            "id": "sg:person.01104376776.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104376776.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lagane", 
            "givenName": "Fr\u00e9d\u00e9ric", 
            "id": "sg:person.015257322153.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257322153.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Firmat", 
            "givenName": "Cyril", 
            "id": "sg:person.01101377665.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101377665.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOFORA, INRA, ONF, CS 40001 Ardon, 45075, Orl\u00e9ans Cedex 2, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "BIOFORA, INRA, ONF, CS 40001 Ardon, 45075, Orl\u00e9ans Cedex 2, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Musch", 
            "givenName": "Brigitte", 
            "id": "sg:person.011130770511.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011130770511.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Delzon", 
            "givenName": "Sylvain", 
            "id": "sg:person.0627106054.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627106054.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France", 
              "id": "http://www.grid.ac/institutes/grid.508391.6", 
              "name": [
                "BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kremer", 
            "givenName": "Antoine", 
            "id": "sg:person.01050121315.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050121315.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/hdy.1994.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034633770", 
              "https://doi.org/10.1038/hdy.1994.112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10886-014-0399-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013891350", 
              "https://doi.org/10.1007/s10886-014-0399-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/forest:2007008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056969854", 
              "https://doi.org/10.1051/forest:2007008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1046/j.1365-2540.1998.00269.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009786567", 
              "https://doi.org/10.1046/j.1365-2540.1998.00269.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11692-012-9218-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053130352", 
              "https://doi.org/10.1007/s11692-012-9218-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00222853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011933141", 
              "https://doi.org/10.1007/bf00222853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/forest:19960106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056969106", 
              "https://doi.org/10.1051/forest:19960106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00273132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078823858", 
              "https://doi.org/10.1007/bf00273132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015310143", 
              "https://doi.org/10.1038/nrg2278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11692-011-9127-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041042174", 
              "https://doi.org/10.1007/s11692-011-9127-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-007-0107-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053322670", 
              "https://doi.org/10.1007/s11295-007-0107-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046913669", 
              "https://doi.org/10.1038/nrg2322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0508-489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000802607", 
              "https://doi.org/10.1038/ng0508-489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13595-016-0570-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032184064", 
              "https://doi.org/10.1007/s13595-016-0570-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-02-28", 
        "datePublishedReg": "2020-02-28", 
        "description": "Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. The aim of the current study was to estimate three genetic parameters (i.e., heritability, evolvability, and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological, and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology, and defense). First, we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits\u2019 additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals; however, we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long-term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11295-019-1407-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3797248", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1036007", 
            "issn": [
              "1614-2942", 
              "1614-2950"
            ], 
            "name": "Tree Genetics & Genomes", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "Quercus petraea", 
          "low sampling size", 
          "overall low variance", 
          "natural tree populations", 
          "mixed oak stands", 
          "genomic relatedness", 
          "genetic parameters", 
          "sampling size", 
          "genetic correlations", 
          "ecological traits", 
          "evolvability estimates", 
          "tree populations", 
          "evolutionary potential", 
          "situ estimates", 
          "oak stands", 
          "larger sampling size", 
          "adult trees", 
          "parentage relationships", 
          "Q. robur", 
          "natural stands", 
          "evolutionary success", 
          "genetic variation", 
          "functional categories", 
          "additive variance", 
          "genetic variance", 
          "estimation of heritability", 
          "situ experiments", 
          "estimates of heritability", 
          "environmental variance", 
          "petraea", 
          "heritability values", 
          "genetic relatedness", 
          "stands", 
          "functional relevance", 
          "large confidence intervals", 
          "traits", 
          "biological levels", 
          "species", 
          "heritability estimates", 
          "heritability", 
          "relatedness", 
          "situ estimation", 
          "same population", 
          "forestry", 
          "robur", 
          "Quercus", 
          "plots", 
          "estimates", 
          "trees", 
          "population", 
          "low variance", 
          "accurate estimation", 
          "variance", 
          "assessment", 
          "situ", 
          "variation", 
          "next generation", 
          "size", 
          "success", 
          "selection", 
          "traditional methods", 
          "generation", 
          "differences", 
          "estimation", 
          "different methods", 
          "correlation", 
          "potential", 
          "current study", 
          "limit", 
          "sample size", 
          "larger sample size", 
          "relationship", 
          "years", 
          "measures", 
          "conditions", 
          "categories", 
          "experiments", 
          "values", 
          "parameters", 
          "levels", 
          "study", 
          "approach", 
          "relevance", 
          "comparison", 
          "aim", 
          "method", 
          "interval", 
          "confidence intervals"
        ], 
        "name": "In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q. robur", 
        "pagination": "32", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125131565"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11295-019-1407-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32256274"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11295-019-1407-9", 
          "https://app.dimensions.ai/details/publication/pub.1125131565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_875.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11295-019-1407-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11295-019-1407-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11295-019-1407-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11295-019-1407-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11295-019-1407-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    284 TRIPLES      22 PREDICATES      128 URIs      106 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11295-019-1407-9 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Ncbbcaf73257040e1a2d844a51c837ac6
    4 schema:citation sg:pub.10.1007/bf00222853
    5 sg:pub.10.1007/bf00273132
    6 sg:pub.10.1007/s10886-014-0399-z
    7 sg:pub.10.1007/s11295-007-0107-z
    8 sg:pub.10.1007/s11692-011-9127-6
    9 sg:pub.10.1007/s11692-012-9218-z
    10 sg:pub.10.1007/s13595-016-0570-5
    11 sg:pub.10.1038/hdy.1994.112
    12 sg:pub.10.1038/ng0508-489
    13 sg:pub.10.1038/nrg2278
    14 sg:pub.10.1038/nrg2322
    15 sg:pub.10.1046/j.1365-2540.1998.00269.x
    16 sg:pub.10.1051/forest:19960106
    17 sg:pub.10.1051/forest:2007008
    18 schema:datePublished 2020-02-28
    19 schema:datePublishedReg 2020-02-28
    20 schema:description Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. The aim of the current study was to estimate three genetic parameters (i.e., heritability, evolvability, and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological, and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology, and defense). First, we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits’ additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals; however, we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long-term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N6bfc0d44f15747ec941eee27776aa274
    25 Nab431cbcc59f49b7b7eaafabb4c84e42
    26 sg:journal.1036007
    27 schema:keywords Q. robur
    28 Quercus
    29 Quercus petraea
    30 accurate estimation
    31 additive variance
    32 adult trees
    33 aim
    34 approach
    35 assessment
    36 biological levels
    37 categories
    38 comparison
    39 conditions
    40 confidence intervals
    41 correlation
    42 current study
    43 differences
    44 different methods
    45 ecological traits
    46 environmental variance
    47 estimates
    48 estimates of heritability
    49 estimation
    50 estimation of heritability
    51 evolutionary potential
    52 evolutionary success
    53 evolvability estimates
    54 experiments
    55 forestry
    56 functional categories
    57 functional relevance
    58 generation
    59 genetic correlations
    60 genetic parameters
    61 genetic relatedness
    62 genetic variance
    63 genetic variation
    64 genomic relatedness
    65 heritability
    66 heritability estimates
    67 heritability values
    68 interval
    69 large confidence intervals
    70 larger sample size
    71 larger sampling size
    72 levels
    73 limit
    74 low sampling size
    75 low variance
    76 measures
    77 method
    78 mixed oak stands
    79 natural stands
    80 natural tree populations
    81 next generation
    82 oak stands
    83 overall low variance
    84 parameters
    85 parentage relationships
    86 petraea
    87 plots
    88 population
    89 potential
    90 relatedness
    91 relationship
    92 relevance
    93 robur
    94 same population
    95 sample size
    96 sampling size
    97 selection
    98 situ
    99 situ estimates
    100 situ estimation
    101 situ experiments
    102 size
    103 species
    104 stands
    105 study
    106 success
    107 traditional methods
    108 traits
    109 tree populations
    110 trees
    111 values
    112 variance
    113 variation
    114 years
    115 schema:name In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q. robur
    116 schema:pagination 32
    117 schema:productId N23203fc1651d450f96ec104a7980ef11
    118 N5357aad5159d4514896b2d365cb1f9d5
    119 N6205262b85cc4d26b7a79b94023b020f
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125131565
    121 https://doi.org/10.1007/s11295-019-1407-9
    122 schema:sdDatePublished 2022-06-01T22:22
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher N9e2031bf1093478ab9e18e06edf6dfa0
    125 schema:url https://doi.org/10.1007/s11295-019-1407-9
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N23203fc1651d450f96ec104a7980ef11 schema:name pubmed_id
    130 schema:value 32256274
    131 rdf:type schema:PropertyValue
    132 N261da23779fc4d3ca0dbef1ebb4f00dc rdf:first sg:person.01101377665.26
    133 rdf:rest N73258771a25248f7ae34e95ed3fd0792
    134 N3f6f966820694652881a21fd44fd1da9 rdf:first sg:person.01300463027.68
    135 rdf:rest Nea6eb9942901433c9fe8c4161ffdc27d
    136 N5357aad5159d4514896b2d365cb1f9d5 schema:name dimensions_id
    137 schema:value pub.1125131565
    138 rdf:type schema:PropertyValue
    139 N548dadd01a324b5c81ef2868e6f92423 rdf:first sg:person.01050121315.39
    140 rdf:rest rdf:nil
    141 N6205262b85cc4d26b7a79b94023b020f schema:name doi
    142 schema:value 10.1007/s11295-019-1407-9
    143 rdf:type schema:PropertyValue
    144 N6bfc0d44f15747ec941eee27776aa274 schema:volumeNumber 16
    145 rdf:type schema:PublicationVolume
    146 N73258771a25248f7ae34e95ed3fd0792 rdf:first sg:person.011130770511.32
    147 rdf:rest Nc452605d3e374afbb476707e88a01efe
    148 N73c33ff3f6b343ea9876e86818ca09fa rdf:first sg:person.07611100303.73
    149 rdf:rest N9367875d7e3c4f8c89a293a48ed47bea
    150 N9367875d7e3c4f8c89a293a48ed47bea rdf:first sg:person.01104376776.49
    151 rdf:rest Ne4f717d070e74291ab36b542855344ad
    152 N94cf39ecfbf4410d8aa7fffbae3edc2a rdf:first sg:person.015563053463.78
    153 rdf:rest N3f6f966820694652881a21fd44fd1da9
    154 N9e2031bf1093478ab9e18e06edf6dfa0 schema:name Springer Nature - SN SciGraph project
    155 rdf:type schema:Organization
    156 Nab431cbcc59f49b7b7eaafabb4c84e42 schema:issueNumber 2
    157 rdf:type schema:PublicationIssue
    158 Nc452605d3e374afbb476707e88a01efe rdf:first sg:person.0627106054.36
    159 rdf:rest N548dadd01a324b5c81ef2868e6f92423
    160 Ncbbcaf73257040e1a2d844a51c837ac6 rdf:first sg:person.01264163547.04
    161 rdf:rest N94cf39ecfbf4410d8aa7fffbae3edc2a
    162 Ne4f717d070e74291ab36b542855344ad rdf:first sg:person.015257322153.42
    163 rdf:rest N261da23779fc4d3ca0dbef1ebb4f00dc
    164 Nea6eb9942901433c9fe8c4161ffdc27d rdf:first sg:person.01052575724.38
    165 rdf:rest N73c33ff3f6b343ea9876e86818ca09fa
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Genetics
    171 rdf:type schema:DefinedTerm
    172 sg:grant.3797248 http://pending.schema.org/fundedItem sg:pub.10.1007/s11295-019-1407-9
    173 rdf:type schema:MonetaryGrant
    174 sg:journal.1036007 schema:issn 1614-2942
    175 1614-2950
    176 schema:name Tree Genetics & Genomes
    177 schema:publisher Springer Nature
    178 rdf:type schema:Periodical
    179 sg:person.01050121315.39 schema:affiliation grid-institutes:grid.508391.6
    180 schema:familyName Kremer
    181 schema:givenName Antoine
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050121315.39
    183 rdf:type schema:Person
    184 sg:person.01052575724.38 schema:affiliation grid-institutes:grid.508391.6
    185 schema:familyName Louvet
    186 schema:givenName Jean-Marc
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052575724.38
    188 rdf:type schema:Person
    189 sg:person.01101377665.26 schema:affiliation grid-institutes:grid.508391.6
    190 schema:familyName Firmat
    191 schema:givenName Cyril
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101377665.26
    193 rdf:type schema:Person
    194 sg:person.01104376776.49 schema:affiliation grid-institutes:grid.508391.6
    195 schema:familyName Torres-Ruiz
    196 schema:givenName José M.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104376776.49
    198 rdf:type schema:Person
    199 sg:person.011130770511.32 schema:affiliation grid-institutes:None
    200 schema:familyName Musch
    201 schema:givenName Brigitte
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011130770511.32
    203 rdf:type schema:Person
    204 sg:person.01264163547.04 schema:affiliation grid-institutes:grid.508391.6
    205 schema:familyName Alexandre
    206 schema:givenName Hermine
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264163547.04
    208 rdf:type schema:Person
    209 sg:person.01300463027.68 schema:affiliation grid-institutes:grid.508391.6
    210 schema:familyName Ducousso
    211 schema:givenName Alexis
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300463027.68
    213 rdf:type schema:Person
    214 sg:person.015257322153.42 schema:affiliation grid-institutes:grid.508391.6
    215 schema:familyName Lagane
    216 schema:givenName Frédéric
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257322153.42
    218 rdf:type schema:Person
    219 sg:person.015563053463.78 schema:affiliation grid-institutes:grid.508391.6
    220 schema:familyName Truffaut
    221 schema:givenName Laura
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563053463.78
    223 rdf:type schema:Person
    224 sg:person.0627106054.36 schema:affiliation grid-institutes:grid.508391.6
    225 schema:familyName Delzon
    226 schema:givenName Sylvain
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627106054.36
    228 rdf:type schema:Person
    229 sg:person.07611100303.73 schema:affiliation grid-institutes:grid.507621.7
    230 schema:familyName Nepveu
    231 schema:givenName Gérard
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611100303.73
    233 rdf:type schema:Person
    234 sg:pub.10.1007/bf00222853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011933141
    235 https://doi.org/10.1007/bf00222853
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/bf00273132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078823858
    238 https://doi.org/10.1007/bf00273132
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s10886-014-0399-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013891350
    241 https://doi.org/10.1007/s10886-014-0399-z
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s11295-007-0107-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053322670
    244 https://doi.org/10.1007/s11295-007-0107-z
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s11692-011-9127-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041042174
    247 https://doi.org/10.1007/s11692-011-9127-6
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s11692-012-9218-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053130352
    250 https://doi.org/10.1007/s11692-012-9218-z
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s13595-016-0570-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032184064
    253 https://doi.org/10.1007/s13595-016-0570-5
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/hdy.1994.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034633770
    256 https://doi.org/10.1038/hdy.1994.112
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/ng0508-489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000802607
    259 https://doi.org/10.1038/ng0508-489
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nrg2278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015310143
    262 https://doi.org/10.1038/nrg2278
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nrg2322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046913669
    265 https://doi.org/10.1038/nrg2322
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1046/j.1365-2540.1998.00269.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009786567
    268 https://doi.org/10.1046/j.1365-2540.1998.00269.x
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1051/forest:19960106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969106
    271 https://doi.org/10.1051/forest:19960106
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1051/forest:2007008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969854
    274 https://doi.org/10.1051/forest:2007008
    275 rdf:type schema:CreativeWork
    276 grid-institutes:None schema:alternateName BIOFORA, INRA, ONF, CS 40001 Ardon, 45075, Orléans Cedex 2, France
    277 schema:name BIOFORA, INRA, ONF, CS 40001 Ardon, 45075, Orléans Cedex 2, France
    278 rdf:type schema:Organization
    279 grid-institutes:grid.507621.7 schema:alternateName UMR SILVA, INRA, 54280, Champenoux, France
    280 schema:name UMR SILVA, INRA, 54280, Champenoux, France
    281 rdf:type schema:Organization
    282 grid-institutes:grid.508391.6 schema:alternateName BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France
    283 schema:name BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France
    284 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...