Patterns of genetic diversity of Prunus africana in Ethiopia: hot spot but not point of origin for range-wide diversity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10-22

AUTHORS

Z. Mihretie, S. Schueler, H. Konrad, E. Bekele, T. Geburek

ABSTRACT

We studied the genetic pattern of 21 Ethiopian populations of Prunus africana by using six nuclear and five plastid microsatellites. In total, 89 alleles were found in the nuclear and 16 haplotypes in the plastid genome. High levels of diversity both in cpSSRs (hT = 0.703) and nSSR (HT = 0.725) were detected. Genetic differentiation among populations at the nuclear and plastid level was moderate (FST = 0.122 vs. GST = 0.478). While Ethiopian populations harbored the highest plastid haplotype diversity throughout Africa, the level of nuclear diversity was lower than in the remaining part of the species’ range. Ten of the observed 16 plastid haplotypes were unique to Ethiopia, suggesting an isolated plastid evolution. Remarkably, all plastid haplotypes found in Ethiopia belonged to one single lineage, while other populations from East Africa and Madagascar contain haplotypes from up to four more divergent lineages. This suggests that in contrast to previous expectations, the Horn of Africa is a hot spot of plastid diversity but not the ancestral origin for present populations of P. africana. The ratio between pollen to seed flow was estimated to be 7.1, indicating predominant gene flow by pollen. The exhaustive pollen flow also facilitated gene exchange with West African nuclear lineages probably in the early Holocene. The Ethiopian rift formed a genetic barrier resulting in population differentiation east and west of the rift; however, it was less effective in disrupting gene flow than the Eastern Rift in more southern parts of the East African range. More... »

PAGES

118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11295-015-0945-z

DOI

http://dx.doi.org/10.1007/s11295-015-0945-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007643587


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia", 
          "id": "http://www.grid.ac/institutes/grid.442845.b", 
          "name": [
            "Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mihretie", 
        "givenName": "Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.425121.1", 
          "name": [
            "Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schueler", 
        "givenName": "S.", 
        "id": "sg:person.01006347201.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006347201.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.425121.1", 
          "name": [
            "Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konrad", 
        "givenName": "H.", 
        "id": "sg:person.01054462401.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462401.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia", 
          "id": "http://www.grid.ac/institutes/grid.7123.7", 
          "name": [
            "Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bekele", 
        "givenName": "E.", 
        "id": "sg:person.0677704242.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677704242.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.425121.1", 
          "name": [
            "Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geburek", 
        "givenName": "T.", 
        "id": "sg:person.0744041133.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744041133.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12686-011-9548-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160842", 
          "https://doi.org/10.1007/s12686-011-9548-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1994.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004770095", 
          "https://doi.org/10.1038/hdy.1994.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/298523a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041196704", 
          "https://doi.org/10.1038/298523a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045837046", 
          "https://doi.org/10.1007/s001220051499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-007-9343-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048039483", 
          "https://doi.org/10.1007/s10592-007-9343-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00221991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036887193", 
          "https://doi.org/10.1007/bf00221991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-15-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042982950", 
          "https://doi.org/10.1186/1471-2156-15-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2009.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042125630", 
          "https://doi.org/10.1038/hdy.2009.116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035883556", 
          "https://doi.org/10.1007/s001220051209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3608-4_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041774644", 
          "https://doi.org/10.1007/978-94-017-3608-4_8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-22", 
    "datePublishedReg": "2015-10-22", 
    "description": "We studied the genetic pattern of 21 Ethiopian populations of Prunus africana by using six nuclear and five plastid microsatellites. In total, 89 alleles were found in the nuclear and 16 haplotypes in the plastid genome. High levels of diversity both in cpSSRs (hT\u2009=\u20090.703) and nSSR (HT\u2009=\u20090.725) were detected. Genetic differentiation among populations at the nuclear and plastid level was moderate (FST\u2009=\u20090.122 vs. GST\u2009=\u20090.478). While Ethiopian populations harbored the highest plastid haplotype diversity throughout Africa, the level of nuclear diversity was lower than in the remaining part of the species\u2019 range. Ten of the observed 16 plastid haplotypes were unique to Ethiopia, suggesting an isolated plastid evolution. Remarkably, all plastid haplotypes found in Ethiopia belonged to one single lineage, while other populations from East Africa and Madagascar contain haplotypes from up to four more divergent lineages. This suggests that in contrast to previous expectations, the Horn of Africa is a hot spot of plastid diversity but not the ancestral origin for present populations of P. africana. The ratio between pollen to seed flow was estimated to be 7.1, indicating predominant gene flow by pollen. The exhaustive pollen flow also facilitated gene exchange with West African nuclear lineages probably in the early Holocene. The Ethiopian rift formed a genetic barrier resulting in population differentiation east and west of the rift; however, it was less effective in disrupting gene flow than the Eastern Rift in more southern parts of the East African range.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11295-015-0945-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036007", 
        "issn": [
          "1614-2942", 
          "1614-2950"
        ], 
        "name": "Tree Genetics & Genomes", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "plastid haplotypes", 
      "gene flow", 
      "Prunus africana", 
      "more southern parts", 
      "plastid evolution", 
      "plastid diversity", 
      "plastid genome", 
      "nuclear lineages", 
      "genetic differentiation", 
      "plastid level", 
      "nuclear diversity", 
      "divergent lineages", 
      "plastid microsatellites", 
      "gene exchange", 
      "seed flow", 
      "haplotype diversity", 
      "genetic diversity", 
      "pollen flow", 
      "single lineage", 
      "genetic patterns", 
      "African range", 
      "Ethiopian population", 
      "ancestral origin", 
      "lineages", 
      "diversity", 
      "haplotypes", 
      "genetic barrier", 
      "africana", 
      "hot spots", 
      "present population", 
      "pollen", 
      "cpSSRs", 
      "genome", 
      "nSSR", 
      "microsatellites", 
      "East Africa", 
      "population", 
      "species", 
      "differentiation", 
      "alleles", 
      "high levels", 
      "early Holocene", 
      "Madagascar", 
      "nuclear", 
      "origin", 
      "spots", 
      "previous expectations", 
      "patterns", 
      "Africa", 
      "Eastern Rift", 
      "levels", 
      "evolution", 
      "southern part", 
      "point of origin", 
      "Horn of Africa", 
      "contrast", 
      "Holocene", 
      "Ethiopia", 
      "part", 
      "exchange", 
      "range", 
      "East", 
      "barriers", 
      "west", 
      "flow", 
      "ratio", 
      "expectations", 
      "point", 
      "horn", 
      "rift", 
      "Ethiopian Rift", 
      "highest plastid haplotype diversity", 
      "plastid haplotype diversity", 
      "isolated plastid evolution", 
      "predominant gene flow", 
      "exhaustive pollen flow", 
      "West African nuclear lineages", 
      "African nuclear lineages", 
      "population differentiation east", 
      "differentiation east", 
      "East African range", 
      "range-wide diversity"
    ], 
    "name": "Patterns of genetic diversity of Prunus africana in Ethiopia: hot spot but not point of origin for range-wide diversity", 
    "pagination": "118", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007643587"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11295-015-0945-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11295-015-0945-z", 
      "https://app.dimensions.ai/details/publication/pub.1007643587"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_672.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11295-015-0945-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11295-015-0945-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11295-015-0945-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11295-015-0945-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11295-015-0945-z'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      22 PREDICATES      117 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11295-015-0945-z schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N7e8633b851554222a23659cb8e2d5ad7
4 schema:citation sg:pub.10.1007/978-94-017-3608-4_8
5 sg:pub.10.1007/bf00221991
6 sg:pub.10.1007/s001220051209
7 sg:pub.10.1007/s001220051499
8 sg:pub.10.1007/s10592-007-9343-x
9 sg:pub.10.1007/s12686-011-9548-7
10 sg:pub.10.1038/298523a0
11 sg:pub.10.1038/hdy.1994.35
12 sg:pub.10.1038/hdy.2009.116
13 sg:pub.10.1186/1471-2156-15-31
14 schema:datePublished 2015-10-22
15 schema:datePublishedReg 2015-10-22
16 schema:description We studied the genetic pattern of 21 Ethiopian populations of Prunus africana by using six nuclear and five plastid microsatellites. In total, 89 alleles were found in the nuclear and 16 haplotypes in the plastid genome. High levels of diversity both in cpSSRs (hT = 0.703) and nSSR (HT = 0.725) were detected. Genetic differentiation among populations at the nuclear and plastid level was moderate (FST = 0.122 vs. GST = 0.478). While Ethiopian populations harbored the highest plastid haplotype diversity throughout Africa, the level of nuclear diversity was lower than in the remaining part of the species’ range. Ten of the observed 16 plastid haplotypes were unique to Ethiopia, suggesting an isolated plastid evolution. Remarkably, all plastid haplotypes found in Ethiopia belonged to one single lineage, while other populations from East Africa and Madagascar contain haplotypes from up to four more divergent lineages. This suggests that in contrast to previous expectations, the Horn of Africa is a hot spot of plastid diversity but not the ancestral origin for present populations of P. africana. The ratio between pollen to seed flow was estimated to be 7.1, indicating predominant gene flow by pollen. The exhaustive pollen flow also facilitated gene exchange with West African nuclear lineages probably in the early Holocene. The Ethiopian rift formed a genetic barrier resulting in population differentiation east and west of the rift; however, it was less effective in disrupting gene flow than the Eastern Rift in more southern parts of the East African range.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N12ebb818e45b4a7b8ede9d9bde99e078
21 N6acbafb36b204659a729ab6961eb1770
22 sg:journal.1036007
23 schema:keywords Africa
24 African nuclear lineages
25 African range
26 East
27 East Africa
28 East African range
29 Eastern Rift
30 Ethiopia
31 Ethiopian Rift
32 Ethiopian population
33 Holocene
34 Horn of Africa
35 Madagascar
36 Prunus africana
37 West African nuclear lineages
38 africana
39 alleles
40 ancestral origin
41 barriers
42 contrast
43 cpSSRs
44 differentiation
45 differentiation east
46 divergent lineages
47 diversity
48 early Holocene
49 evolution
50 exchange
51 exhaustive pollen flow
52 expectations
53 flow
54 gene exchange
55 gene flow
56 genetic barrier
57 genetic differentiation
58 genetic diversity
59 genetic patterns
60 genome
61 haplotype diversity
62 haplotypes
63 high levels
64 highest plastid haplotype diversity
65 horn
66 hot spots
67 isolated plastid evolution
68 levels
69 lineages
70 microsatellites
71 more southern parts
72 nSSR
73 nuclear
74 nuclear diversity
75 nuclear lineages
76 origin
77 part
78 patterns
79 plastid diversity
80 plastid evolution
81 plastid genome
82 plastid haplotype diversity
83 plastid haplotypes
84 plastid level
85 plastid microsatellites
86 point
87 point of origin
88 pollen
89 pollen flow
90 population
91 population differentiation east
92 predominant gene flow
93 present population
94 previous expectations
95 range
96 range-wide diversity
97 ratio
98 rift
99 seed flow
100 single lineage
101 southern part
102 species
103 spots
104 west
105 schema:name Patterns of genetic diversity of Prunus africana in Ethiopia: hot spot but not point of origin for range-wide diversity
106 schema:pagination 118
107 schema:productId N4f47e7b9384d4b56b074ac94dd3513a7
108 Ndf896ffc0ad04211aec1316f6f619cc2
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643587
110 https://doi.org/10.1007/s11295-015-0945-z
111 schema:sdDatePublished 2021-11-01T18:25
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N182d9db6f35a4f82b6ae5b3fe0e1140f
114 schema:url https://doi.org/10.1007/s11295-015-0945-z
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N12ebb818e45b4a7b8ede9d9bde99e078 schema:issueNumber 6
119 rdf:type schema:PublicationIssue
120 N162fcaf2b8ff4b388607db09c2b351e2 rdf:first sg:person.01054462401.27
121 rdf:rest Ncb31d57ec4fd468687ccdd9f81601509
122 N182d9db6f35a4f82b6ae5b3fe0e1140f schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N3d2ec19051f042638b6591907f0413f2 schema:affiliation grid-institutes:grid.442845.b
125 schema:familyName Mihretie
126 schema:givenName Z.
127 rdf:type schema:Person
128 N4f47e7b9384d4b56b074ac94dd3513a7 schema:name dimensions_id
129 schema:value pub.1007643587
130 rdf:type schema:PropertyValue
131 N6acbafb36b204659a729ab6961eb1770 schema:volumeNumber 11
132 rdf:type schema:PublicationVolume
133 N6afb595323d94fecb612a284419f8fee rdf:first sg:person.0744041133.33
134 rdf:rest rdf:nil
135 N7e8633b851554222a23659cb8e2d5ad7 rdf:first N3d2ec19051f042638b6591907f0413f2
136 rdf:rest Ne7333f4026d94888ac4558319e793904
137 Ncb31d57ec4fd468687ccdd9f81601509 rdf:first sg:person.0677704242.55
138 rdf:rest N6afb595323d94fecb612a284419f8fee
139 Ndf896ffc0ad04211aec1316f6f619cc2 schema:name doi
140 schema:value 10.1007/s11295-015-0945-z
141 rdf:type schema:PropertyValue
142 Ne7333f4026d94888ac4558319e793904 rdf:first sg:person.01006347201.75
143 rdf:rest N162fcaf2b8ff4b388607db09c2b351e2
144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biological Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
148 schema:name Genetics
149 rdf:type schema:DefinedTerm
150 sg:journal.1036007 schema:issn 1614-2942
151 1614-2950
152 schema:name Tree Genetics & Genomes
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01006347201.75 schema:affiliation grid-institutes:grid.425121.1
156 schema:familyName Schueler
157 schema:givenName S.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006347201.75
159 rdf:type schema:Person
160 sg:person.01054462401.27 schema:affiliation grid-institutes:grid.425121.1
161 schema:familyName Konrad
162 schema:givenName H.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462401.27
164 rdf:type schema:Person
165 sg:person.0677704242.55 schema:affiliation grid-institutes:grid.7123.7
166 schema:familyName Bekele
167 schema:givenName E.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677704242.55
169 rdf:type schema:Person
170 sg:person.0744041133.33 schema:affiliation grid-institutes:grid.425121.1
171 schema:familyName Geburek
172 schema:givenName T.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744041133.33
174 rdf:type schema:Person
175 sg:pub.10.1007/978-94-017-3608-4_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041774644
176 https://doi.org/10.1007/978-94-017-3608-4_8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00221991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036887193
179 https://doi.org/10.1007/bf00221991
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s001220051209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035883556
182 https://doi.org/10.1007/s001220051209
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s001220051499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837046
185 https://doi.org/10.1007/s001220051499
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s10592-007-9343-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048039483
188 https://doi.org/10.1007/s10592-007-9343-x
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s12686-011-9548-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160842
191 https://doi.org/10.1007/s12686-011-9548-7
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/298523a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041196704
194 https://doi.org/10.1038/298523a0
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/hdy.1994.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004770095
197 https://doi.org/10.1038/hdy.1994.35
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/hdy.2009.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042125630
200 https://doi.org/10.1038/hdy.2009.116
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2156-15-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042982950
203 https://doi.org/10.1186/1471-2156-15-31
204 rdf:type schema:CreativeWork
205 grid-institutes:grid.425121.1 schema:alternateName Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria
206 schema:name Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, A-1131, Vienna, Austria
207 rdf:type schema:Organization
208 grid-institutes:grid.442845.b schema:alternateName Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
209 schema:name Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
210 rdf:type schema:Organization
211 grid-institutes:grid.7123.7 schema:alternateName Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
212 schema:name Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...