QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-06-15

AUTHORS

Igor Pacheco, Daniele Bassi, Iban Eduardo, Angelo Ciacciulli, Raul Pirona, Laura Rossini, Alberto Vecchietti

ABSTRACT

Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross “Contender” (C, resistant) × “Elegant Lady” (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C × EL population and to construct a linkage map. C × EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C × EL-2, R2 = 13.1–31.5 %) and EPPISF032 (LG C × EL-4, R2 = 11–14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R2 = 3.0–11.0 %). These results suggest that in the C × EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit. More... »

PAGES

1223-1242

References to SciGraph publications

  • 2008-02-18. Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping in BMC GENOMICS
  • 2012-06-21. Mapping quantitative trait loci for kernel composition in almond in BMC GENOMIC DATA
  • 2013-10-22. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach in BMC PLANT BIOLOGY
  • 2004-05-27. QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana in THEORETICAL AND APPLIED GENETICS
  • 2012-08-05. Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps in TREE GENETICS & GENOMES
  • 2008-06-18. A cherry map from the inter-specific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellite, gene-specific and isoenzyme markers in TREE GENETICS & GENOMES
  • 2008-02-27. Identification and stability of QTLs for fruit quality traits in apple in TREE GENETICS & GENOMES
  • 2006-09-21. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit in TREE GENETICS & GENOMES
  • 2009-08-26. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm in BMC PLANT BIOLOGY
  • 2002-09-04. Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch] in THEORETICAL AND APPLIED GENETICS
  • 2012-03-28. The peach genome in TREE GENETICS & GENOMES
  • 2012-11-29. Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach in TREE GENETICS & GENOMES
  • 2004-02-08. A molecular linkage map with associated QTLs from a hulless × covered spring oat population in THEORETICAL AND APPLIED GENETICS
  • 2008-12-11. Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species in MOLECULAR BREEDING
  • 2004-07-06. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance genes in THEORETICAL AND APPLIED GENETICS
  • 2010-07-20. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties in BMC GENOMIC DATA
  • 2003-08. QTLs for powdery mildew resistance in peach ×Prunus davidiana crosses: consistency across generations and environments in MOLECULAR BREEDING
  • 2013-07-17. High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations in THEORETICAL AND APPLIED GENETICS
  • 2007-01-16. Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome in TREE GENETICS & GENOMES
  • 2008-09-25. Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection in PLANT CELL REPORTS
  • 2004-12. Methods of screening apricot fruit for resistance to brown rot caused by Monilinia spp in AUSTRALASIAN PLANT PATHOLOGY
  • 2012-06-10. A first insight into peach [Prunus persica (L.) Batsch] SNP variability in TREE GENETICS & GENOMES
  • 2000-08. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch] in THEORETICAL AND APPLIED GENETICS
  • 2012-06-24. High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.) in TREE GENETICS & GENOMES
  • 2010-10-20. QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect in TREE GENETICS & GENOMES
  • 1999-07. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus in THEORETICAL AND APPLIED GENETICS
  • 2009-07-28. Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry in TREE GENETICS & GENOMES
  • 1994-02. Evaluation of two screening methods for resistance of apricot, plum and peach toMonilinia laxa in EUPHYTICA
  • 2009. Rosaceaous Genome Sequencing: Perspectives and Progress in GENETICS AND GENOMICS OF ROSACEAE
  • 2010-03-30. Prunus microsatellite marker transferability across rosaceous crops in TREE GENETICS & GENOMES
  • 2005-09-30. Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus in THEORETICAL AND APPLIED GENETICS
  • 2008-01-24. Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach in TREE GENETICS & GENOMES
  • 2012-04-24. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy in BMC GENOMICS
  • 2009. Applied Statistical Genetics with R, For Population-based Association Studies in NONE
  • 2007-08-09. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat in MOLECULAR BREEDING
  • 2002-05-23. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.) in THEORETICAL AND APPLIED GENETICS
  • 2006-11. The plant immune system in NATURE
  • 2013-03-24. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution in NATURE GENETICS
  • 2011-01-12. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family in BMC ECOLOGY AND EVOLUTION
  • 2005-08-09. Microsatellite and AFLP markers in the Prunus persica [L. (Batsch)]×P. ferganensis BC1linkage map: saturation and coverage improvement in THEORETICAL AND APPLIED GENETICS
  • 2011-11-22. Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection in BMC GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11295-014-0756-7

    DOI

    http://dx.doi.org/10.1007/s11295-014-0756-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020807929


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Universit\u00e0 degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Universit\u00e0 degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pacheco", 
            "givenName": "Igor", 
            "id": "sg:person.011341200731.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011341200731.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Universit\u00e0 degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Universit\u00e0 degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bassi", 
            "givenName": "Daniele", 
            "id": "sg:person.0675303142.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675303142.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departament de Gen\u00e8tica Vegetal, Centre de Recerca en Agrigen\u00f2mica CSIC-IRTA-UAB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy", 
                "Departament de Gen\u00e8tica Vegetal, Centre de Recerca en Agrigen\u00f2mica CSIC-IRTA-UAB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eduardo", 
            "givenName": "Iban", 
            "id": "sg:person.01115235460.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115235460.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Universit\u00e0 degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Universit\u00e0 degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ciacciulli", 
            "givenName": "Angelo", 
            "id": "sg:person.01313633571.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313633571.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Consiglio Nazionale per la Ricerca, Institute of Agricultural Biology and Biotechnology, Via Bassini 15, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.510304.3", 
              "name": [
                "Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy", 
                "Consiglio Nazionale per la Ricerca, Institute of Agricultural Biology and Biotechnology, Via Bassini 15, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pirona", 
            "givenName": "Raul", 
            "id": "sg:person.01155746332.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155746332.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy", 
              "id": "http://www.grid.ac/institutes/grid.425375.2", 
              "name": [
                "Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Universit\u00e0 degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy", 
                "Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rossini", 
            "givenName": "Laura", 
            "id": "sg:person.0743416342.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743416342.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Monsanto Vegetable Seeds Division, P.O. Box 1050, 2660 BB, Bergschenhoek, The Netherlands", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy", 
                "Monsanto Vegetable Seeds Division, P.O. Box 1050, 2660 BB, Bergschenhoek, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vecchietti", 
            "givenName": "Alberto", 
            "id": "sg:person.0611206543.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611206543.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00122-003-1556-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038615404", 
              "https://doi.org/10.1007/s00122-003-1556-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0006-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032776660", 
              "https://doi.org/10.1007/s00122-005-0006-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-007-0130-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053139082", 
              "https://doi.org/10.1007/s11295-007-0130-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-89554-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009510827", 
              "https://doi.org/10.1007/978-0-387-89554-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-009-0225-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024546980", 
              "https://doi.org/10.1007/s11295-009-0225-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-012-0493-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052914679", 
              "https://doi.org/10.1007/s11295-012-0493-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0079-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021339427", 
              "https://doi.org/10.1007/s00122-005-0079-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-0967-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047757104", 
              "https://doi.org/10.1007/s00122-002-0967-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-013-2155-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044616789", 
              "https://doi.org/10.1007/s00122-013-2155-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010363721", 
              "https://doi.org/10.1186/1471-2164-9-80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035883556", 
              "https://doi.org/10.1007/s001220051209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-006-0074-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013873246", 
              "https://doi.org/10.1007/s11295-006-0074-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-13-47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027515028", 
              "https://doi.org/10.1186/1471-2156-13-47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053552199", 
              "https://doi.org/10.1186/1471-2164-12-569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-11-69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041517248", 
              "https://doi.org/10.1186/1471-2156-11-69"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025417507358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012275754", 
              "https://doi.org/10.1023/a:1025417507358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039464463", 
              "https://doi.org/10.1038/nature05286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-13-166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015006518", 
              "https://doi.org/10.1186/1471-2229-13-166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-008-0166-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037627741", 
              "https://doi.org/10.1007/s11295-008-0166-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-9-114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006360239", 
              "https://doi.org/10.1186/1471-2229-9-114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-007-9127-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033808256", 
              "https://doi.org/10.1007/s11032-007-9127-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1071/ap04062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036500532", 
              "https://doi.org/10.1071/ap04062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-012-0546-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017104316", 
              "https://doi.org/10.1007/s11295-012-0546-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-010-0284-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031907771", 
              "https://doi.org/10.1007/s11295-010-0284-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1703-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025572234", 
              "https://doi.org/10.1007/s00122-004-1703-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-77491-6_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003623337", 
              "https://doi.org/10.1007/978-0-387-77491-6_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-012-0522-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021231798", 
              "https://doi.org/10.1007/s11295-012-0522-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-006-0053-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052534677", 
              "https://doi.org/10.1007/s11295-006-0053-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040618371", 
              "https://doi.org/10.1038/ng.2586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-11-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031489336", 
              "https://doi.org/10.1186/1471-2148-11-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-010-0334-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046737458", 
              "https://doi.org/10.1007/s11295-010-0334-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-008-9243-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021569225", 
              "https://doi.org/10.1007/s11032-008-9243-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045837046", 
              "https://doi.org/10.1007/s001220051499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-008-0612-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001405238", 
              "https://doi.org/10.1007/s00299-008-0612-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-0867-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016273111", 
              "https://doi.org/10.1007/s00122-002-0867-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-008-0140-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003571401", 
              "https://doi.org/10.1007/s11295-008-0140-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-012-0523-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017738629", 
              "https://doi.org/10.1007/s11295-012-0523-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1694-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015858557", 
              "https://doi.org/10.1007/s00122-004-1694-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047305939", 
              "https://doi.org/10.1186/1471-2164-13-142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040314886", 
              "https://doi.org/10.1007/bf02551455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-012-0580-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044453669", 
              "https://doi.org/10.1007/s11295-012-0580-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06-15", 
        "datePublishedReg": "2014-06-15", 
        "description": "Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross \u201cContender\u201d (C, resistant)\u2009\u00d7\u2009\u201cElegant Lady\u201d (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C\u2009\u00d7\u2009EL population and to construct a linkage map. C\u2009\u00d7\u2009EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9\u00a0cM, covering 78.73\u00a0% of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C\u2009\u00d7\u2009EL-2, R2\u2009=\u200913.1\u201331.5\u00a0%) and EPPISF032 (LG C\u2009\u00d7\u2009EL-4, R2\u2009=\u200911\u201314\u00a0%) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R2\u2009=\u20093.0\u201311.0\u00a0%). These results suggest that in the C\u2009\u00d7\u2009EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11295-014-0756-7", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036007", 
            "issn": [
              "1614-2942", 
              "1614-2950"
            ], 
            "name": "Tree Genetics & Genomes", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "simple sequence repeats", 
          "resistance traits", 
          "genomic regions", 
          "maturity date", 
          "Monilinia spp", 
          "brown rot", 
          "linkage groups", 
          "F1 progeny", 
          "multiple-QTL mapping analysis", 
          "single nucleotide polymorphism (SNP) markers", 
          "quantitative trait locus (QTL) analysis", 
          "brown rot resistance", 
          "stone fruit production", 
          "QTL mapping analysis", 
          "post-harvest losses", 
          "average interval distance", 
          "significant post-harvest losses", 
          "Previous genetic analysis", 
          "different genomic regions", 
          "Assisted Selection", 
          "new cultivars", 
          "rot resistance", 
          "fruit production", 
          "MD traits", 
          "QTL mapping", 
          "artificial infection", 
          "polymorphism markers", 
          "linkage map", 
          "quantitative traits", 
          "enhanced resistance", 
          "peach genome", 
          "sequence repeats", 
          "molecular markers", 
          "QTL", 
          "Elegant Lady", 
          "locus analysis", 
          "traits", 
          "fungal penetration", 
          "infection frequency", 
          "genetic analysis", 
          "disease impact", 
          "intertrait correlations", 
          "progeny", 
          "EL population", 
          "season", 
          "peach", 
          "spp", 
          "fruit", 
          "mapping analysis", 
          "distinguishable mechanisms", 
          "resistance", 
          "interval distance", 
          "cultivars", 
          "rot", 
          "CM", 
          "selection", 
          "genome", 
          "markers", 
          "cross", 
          "repeats", 
          "production", 
          "F1", 
          "region", 
          "segregates", 
          "isolates", 
          "spread", 
          "population", 
          "loss", 
          "date", 
          "mechanism", 
          "maps", 
          "impact", 
          "analysis", 
          "M1a", 
          "mapping", 
          "infection", 
          "diameter", 
          "treatment", 
          "skin", 
          "correlation", 
          "distance", 
          "results", 
          "penetration", 
          "frequency", 
          "order", 
          "group", 
          "covariates", 
          "skin resistance", 
          "contenders", 
          "lady"
        ], 
        "name": "QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny", 
        "pagination": "1223-1242", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020807929"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11295-014-0756-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11295-014-0756-7", 
          "https://app.dimensions.ai/details/publication/pub.1020807929"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_621.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11295-014-0756-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11295-014-0756-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11295-014-0756-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11295-014-0756-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11295-014-0756-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    367 TRIPLES      21 PREDICATES      155 URIs      106 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11295-014-0756-7 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N3c5628202410491e93074339c7c7dd7a
    4 schema:citation sg:pub.10.1007/978-0-387-77491-6_28
    5 sg:pub.10.1007/978-0-387-89554-3
    6 sg:pub.10.1007/bf02551455
    7 sg:pub.10.1007/s00122-002-0867-7
    8 sg:pub.10.1007/s00122-002-0967-4
    9 sg:pub.10.1007/s00122-003-1556-x
    10 sg:pub.10.1007/s00122-004-1694-9
    11 sg:pub.10.1007/s00122-004-1703-z
    12 sg:pub.10.1007/s00122-005-0006-3
    13 sg:pub.10.1007/s00122-005-0079-z
    14 sg:pub.10.1007/s00122-013-2155-0
    15 sg:pub.10.1007/s001220051209
    16 sg:pub.10.1007/s001220051499
    17 sg:pub.10.1007/s00299-008-0612-z
    18 sg:pub.10.1007/s11032-007-9127-5
    19 sg:pub.10.1007/s11032-008-9243-x
    20 sg:pub.10.1007/s11295-006-0053-1
    21 sg:pub.10.1007/s11295-006-0074-9
    22 sg:pub.10.1007/s11295-007-0130-0
    23 sg:pub.10.1007/s11295-008-0140-6
    24 sg:pub.10.1007/s11295-008-0166-9
    25 sg:pub.10.1007/s11295-009-0225-x
    26 sg:pub.10.1007/s11295-010-0284-z
    27 sg:pub.10.1007/s11295-010-0334-6
    28 sg:pub.10.1007/s11295-012-0493-8
    29 sg:pub.10.1007/s11295-012-0522-7
    30 sg:pub.10.1007/s11295-012-0523-6
    31 sg:pub.10.1007/s11295-012-0546-z
    32 sg:pub.10.1007/s11295-012-0580-x
    33 sg:pub.10.1023/a:1025417507358
    34 sg:pub.10.1038/nature05286
    35 sg:pub.10.1038/ng.2586
    36 sg:pub.10.1071/ap04062
    37 sg:pub.10.1186/1471-2148-11-9
    38 sg:pub.10.1186/1471-2156-11-69
    39 sg:pub.10.1186/1471-2156-13-47
    40 sg:pub.10.1186/1471-2164-12-569
    41 sg:pub.10.1186/1471-2164-13-142
    42 sg:pub.10.1186/1471-2164-9-80
    43 sg:pub.10.1186/1471-2229-13-166
    44 sg:pub.10.1186/1471-2229-9-114
    45 schema:datePublished 2014-06-15
    46 schema:datePublishedReg 2014-06-15
    47 schema:description Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross “Contender” (C, resistant) × “Elegant Lady” (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C × EL population and to construct a linkage map. C × EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C × EL-2, R2 = 13.1–31.5 %) and EPPISF032 (LG C × EL-4, R2 = 11–14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R2 = 3.0–11.0 %). These results suggest that in the C × EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit.
    48 schema:genre article
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N0d9e6688126f4084a57b25c5b80ce166
    51 N9e3a61d8adaf492e8e34d9eb0797cbc5
    52 sg:journal.1036007
    53 schema:keywords Assisted Selection
    54 CM
    55 EL population
    56 Elegant Lady
    57 F1
    58 F1 progeny
    59 M1a
    60 MD traits
    61 Monilinia spp
    62 Previous genetic analysis
    63 QTL
    64 QTL mapping
    65 QTL mapping analysis
    66 analysis
    67 artificial infection
    68 average interval distance
    69 brown rot
    70 brown rot resistance
    71 contenders
    72 correlation
    73 covariates
    74 cross
    75 cultivars
    76 date
    77 diameter
    78 different genomic regions
    79 disease impact
    80 distance
    81 distinguishable mechanisms
    82 enhanced resistance
    83 frequency
    84 fruit
    85 fruit production
    86 fungal penetration
    87 genetic analysis
    88 genome
    89 genomic regions
    90 group
    91 impact
    92 infection
    93 infection frequency
    94 intertrait correlations
    95 interval distance
    96 isolates
    97 lady
    98 linkage groups
    99 linkage map
    100 locus analysis
    101 loss
    102 mapping
    103 mapping analysis
    104 maps
    105 markers
    106 maturity date
    107 mechanism
    108 molecular markers
    109 multiple-QTL mapping analysis
    110 new cultivars
    111 order
    112 peach
    113 peach genome
    114 penetration
    115 polymorphism markers
    116 population
    117 post-harvest losses
    118 production
    119 progeny
    120 quantitative trait locus (QTL) analysis
    121 quantitative traits
    122 region
    123 repeats
    124 resistance
    125 resistance traits
    126 results
    127 rot
    128 rot resistance
    129 season
    130 segregates
    131 selection
    132 sequence repeats
    133 significant post-harvest losses
    134 simple sequence repeats
    135 single nucleotide polymorphism (SNP) markers
    136 skin
    137 skin resistance
    138 spp
    139 spread
    140 stone fruit production
    141 traits
    142 treatment
    143 schema:name QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny
    144 schema:pagination 1223-1242
    145 schema:productId N15cb0e2ddbbe4cf9b317ff0dc9aaa1d3
    146 N409e344accbe466d9273ed3bdea1df73
    147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020807929
    148 https://doi.org/10.1007/s11295-014-0756-7
    149 schema:sdDatePublished 2022-12-01T06:31
    150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    151 schema:sdPublisher Nba993517921d4ca1816990e08548ae99
    152 schema:url https://doi.org/10.1007/s11295-014-0756-7
    153 sgo:license sg:explorer/license/
    154 sgo:sdDataset articles
    155 rdf:type schema:ScholarlyArticle
    156 N0d9e6688126f4084a57b25c5b80ce166 schema:volumeNumber 10
    157 rdf:type schema:PublicationVolume
    158 N15cb0e2ddbbe4cf9b317ff0dc9aaa1d3 schema:name doi
    159 schema:value 10.1007/s11295-014-0756-7
    160 rdf:type schema:PropertyValue
    161 N2ef00bedc665442481405e39b9a56623 rdf:first sg:person.01155746332.04
    162 rdf:rest N7b507758d6f94b8b96051665a648bf6e
    163 N39736496c0044b7baa08809bd45757eb rdf:first sg:person.0675303142.98
    164 rdf:rest N468c9c1c60f746b78852db31a0baf6f4
    165 N3c5628202410491e93074339c7c7dd7a rdf:first sg:person.011341200731.89
    166 rdf:rest N39736496c0044b7baa08809bd45757eb
    167 N409e344accbe466d9273ed3bdea1df73 schema:name dimensions_id
    168 schema:value pub.1020807929
    169 rdf:type schema:PropertyValue
    170 N468c9c1c60f746b78852db31a0baf6f4 rdf:first sg:person.01115235460.40
    171 rdf:rest Ncb8bf9fd277a49bd9a793225fe21783b
    172 N7b507758d6f94b8b96051665a648bf6e rdf:first sg:person.0743416342.96
    173 rdf:rest N955ce3027f16462885225c90cca98c4d
    174 N955ce3027f16462885225c90cca98c4d rdf:first sg:person.0611206543.70
    175 rdf:rest rdf:nil
    176 N9e3a61d8adaf492e8e34d9eb0797cbc5 schema:issueNumber 5
    177 rdf:type schema:PublicationIssue
    178 Nba993517921d4ca1816990e08548ae99 schema:name Springer Nature - SN SciGraph project
    179 rdf:type schema:Organization
    180 Ncb8bf9fd277a49bd9a793225fe21783b rdf:first sg:person.01313633571.64
    181 rdf:rest N2ef00bedc665442481405e39b9a56623
    182 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Biological Sciences
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Genetics
    187 rdf:type schema:DefinedTerm
    188 sg:journal.1036007 schema:issn 1614-2942
    189 1614-2950
    190 schema:name Tree Genetics & Genomes
    191 schema:publisher Springer Nature
    192 rdf:type schema:Periodical
    193 sg:person.01115235460.40 schema:affiliation grid-institutes:None
    194 schema:familyName Eduardo
    195 schema:givenName Iban
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115235460.40
    197 rdf:type schema:Person
    198 sg:person.011341200731.89 schema:affiliation grid-institutes:grid.4708.b
    199 schema:familyName Pacheco
    200 schema:givenName Igor
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011341200731.89
    202 rdf:type schema:Person
    203 sg:person.01155746332.04 schema:affiliation grid-institutes:grid.510304.3
    204 schema:familyName Pirona
    205 schema:givenName Raul
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155746332.04
    207 rdf:type schema:Person
    208 sg:person.01313633571.64 schema:affiliation grid-institutes:grid.4708.b
    209 schema:familyName Ciacciulli
    210 schema:givenName Angelo
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313633571.64
    212 rdf:type schema:Person
    213 sg:person.0611206543.70 schema:affiliation grid-institutes:None
    214 schema:familyName Vecchietti
    215 schema:givenName Alberto
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611206543.70
    217 rdf:type schema:Person
    218 sg:person.0675303142.98 schema:affiliation grid-institutes:grid.4708.b
    219 schema:familyName Bassi
    220 schema:givenName Daniele
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675303142.98
    222 rdf:type schema:Person
    223 sg:person.0743416342.96 schema:affiliation grid-institutes:grid.425375.2
    224 schema:familyName Rossini
    225 schema:givenName Laura
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743416342.96
    227 rdf:type schema:Person
    228 sg:pub.10.1007/978-0-387-77491-6_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003623337
    229 https://doi.org/10.1007/978-0-387-77491-6_28
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/978-0-387-89554-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009510827
    232 https://doi.org/10.1007/978-0-387-89554-3
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/bf02551455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040314886
    235 https://doi.org/10.1007/bf02551455
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00122-002-0867-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016273111
    238 https://doi.org/10.1007/s00122-002-0867-7
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00122-002-0967-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047757104
    241 https://doi.org/10.1007/s00122-002-0967-4
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s00122-003-1556-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038615404
    244 https://doi.org/10.1007/s00122-003-1556-x
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s00122-004-1694-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015858557
    247 https://doi.org/10.1007/s00122-004-1694-9
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s00122-004-1703-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025572234
    250 https://doi.org/10.1007/s00122-004-1703-z
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s00122-005-0006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032776660
    253 https://doi.org/10.1007/s00122-005-0006-3
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s00122-005-0079-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021339427
    256 https://doi.org/10.1007/s00122-005-0079-z
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s00122-013-2155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044616789
    259 https://doi.org/10.1007/s00122-013-2155-0
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s001220051209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035883556
    262 https://doi.org/10.1007/s001220051209
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s001220051499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837046
    265 https://doi.org/10.1007/s001220051499
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s00299-008-0612-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405238
    268 https://doi.org/10.1007/s00299-008-0612-z
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s11032-007-9127-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033808256
    271 https://doi.org/10.1007/s11032-007-9127-5
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s11032-008-9243-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021569225
    274 https://doi.org/10.1007/s11032-008-9243-x
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s11295-006-0053-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052534677
    277 https://doi.org/10.1007/s11295-006-0053-1
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s11295-006-0074-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013873246
    280 https://doi.org/10.1007/s11295-006-0074-9
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s11295-007-0130-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053139082
    283 https://doi.org/10.1007/s11295-007-0130-0
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s11295-008-0140-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003571401
    286 https://doi.org/10.1007/s11295-008-0140-6
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s11295-008-0166-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037627741
    289 https://doi.org/10.1007/s11295-008-0166-9
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/s11295-009-0225-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024546980
    292 https://doi.org/10.1007/s11295-009-0225-x
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s11295-010-0284-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031907771
    295 https://doi.org/10.1007/s11295-010-0284-z
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1007/s11295-010-0334-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046737458
    298 https://doi.org/10.1007/s11295-010-0334-6
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s11295-012-0493-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052914679
    301 https://doi.org/10.1007/s11295-012-0493-8
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/s11295-012-0522-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021231798
    304 https://doi.org/10.1007/s11295-012-0522-7
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s11295-012-0523-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017738629
    307 https://doi.org/10.1007/s11295-012-0523-6
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s11295-012-0546-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017104316
    310 https://doi.org/10.1007/s11295-012-0546-z
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s11295-012-0580-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044453669
    313 https://doi.org/10.1007/s11295-012-0580-x
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1023/a:1025417507358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012275754
    316 https://doi.org/10.1023/a:1025417507358
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nature05286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039464463
    319 https://doi.org/10.1038/nature05286
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/ng.2586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040618371
    322 https://doi.org/10.1038/ng.2586
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1071/ap04062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036500532
    325 https://doi.org/10.1071/ap04062
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/1471-2148-11-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031489336
    328 https://doi.org/10.1186/1471-2148-11-9
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/1471-2156-11-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041517248
    331 https://doi.org/10.1186/1471-2156-11-69
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1471-2156-13-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027515028
    334 https://doi.org/10.1186/1471-2156-13-47
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/1471-2164-12-569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053552199
    337 https://doi.org/10.1186/1471-2164-12-569
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/1471-2164-13-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047305939
    340 https://doi.org/10.1186/1471-2164-13-142
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/1471-2164-9-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010363721
    343 https://doi.org/10.1186/1471-2164-9-80
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1186/1471-2229-13-166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015006518
    346 https://doi.org/10.1186/1471-2229-13-166
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1186/1471-2229-9-114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006360239
    349 https://doi.org/10.1186/1471-2229-9-114
    350 rdf:type schema:CreativeWork
    351 grid-institutes:None schema:alternateName Departament de Genètica Vegetal, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain
    352 Monsanto Vegetable Seeds Division, P.O. Box 1050, 2660 BB, Bergschenhoek, The Netherlands
    353 schema:name Departament de Genètica Vegetal, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB (CRAG), Campus UAB, 08193 Bellaterra, Barcelona, Spain
    354 Monsanto Vegetable Seeds Division, P.O. Box 1050, 2660 BB, Bergschenhoek, The Netherlands
    355 Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
    356 rdf:type schema:Organization
    357 grid-institutes:grid.425375.2 schema:alternateName Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
    358 schema:name Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
    359 Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
    360 rdf:type schema:Organization
    361 grid-institutes:grid.4708.b schema:alternateName Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
    362 schema:name Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
    363 rdf:type schema:Organization
    364 grid-institutes:grid.510304.3 schema:alternateName Consiglio Nazionale per la Ricerca, Institute of Agricultural Biology and Biotechnology, Via Bassini 15, 20133, Milan, Italy
    365 schema:name Consiglio Nazionale per la Ricerca, Institute of Agricultural Biology and Biotechnology, Via Bassini 15, 20133, Milan, Italy
    366 Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
    367 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...