Ontology type: schema:ScholarlyArticle Open Access: True
2017-03-06
AUTHORSSofoklis Vogiazas, Constantinos Alexiou
ABSTRACTThis paper provides empirical evidence on the relationship between residential property prices and the business cycle for seven advanced Organisation for Economic Co-operation and Development economies over the period 2002–2015 using quarterly data. To this end, panel data and time series methodologies are adopted as a means of providing a contextual framework on the extant relationship. The panel methodological framework explores the interaction between economic fundamentals and financial variables while the use of time series methodologies developed by Phillips et al. (2011 and 2015) provide novel evidence on the detection of property price bubbles that have been manifested in each individual country of the sample. In particular, the short-run dynamic panel framework provides a robust exploratory platform thus, shedding light on the determinants of property prices (i.e. real gross domestic product, bank credit growth, long-term bond yields and real effective exchange rate) whilst the bubble detection methodologies provide evidence of the impact of credit-driven economies on the propagation of housing booms which can serve as warning signals of the potential formation of housing bubbles. More... »
PAGES119-131
http://scigraph.springernature.com/pub.10.1007/s11293-017-9531-0
DOIhttp://dx.doi.org/10.1007/s11293-017-9531-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1084030922
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Economics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Econometrics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Black Sea Trade and Development Bank, 1 Komninon Str., 546 22 Thessaloniki, Greece",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Black Sea Trade and Development Bank, 1 Komninon Str., 546 22 Thessaloniki, Greece"
],
"type": "Organization"
},
"familyName": "Vogiazas",
"givenName": "Sofoklis",
"id": "sg:person.010240256167.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010240256167.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cranfield School of Management, College Rd, MK43 0AL, Cranfield, UK",
"id": "http://www.grid.ac/institutes/grid.12026.37",
"name": [
"Cranfield School of Management, College Rd, MK43 0AL, Cranfield, UK"
],
"type": "Organization"
},
"familyName": "Alexiou",
"givenName": "Constantinos",
"id": "sg:person.014003674721.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003674721.38"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00181-015-1007-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005859828",
"https://doi.org/10.1007/s00181-015-1007-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00141044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003021595",
"https://doi.org/10.1007/bf00141044"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10258-002-0009-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004421921",
"https://doi.org/10.1007/s10258-002-0009-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-03-06",
"datePublishedReg": "2017-03-06",
"description": "This paper provides empirical evidence on the relationship between residential property prices and the business cycle for seven advanced Organisation for Economic Co-operation and Development economies over the period 2002\u20132015 using quarterly data. To this end, panel data and time series methodologies are adopted as a means of providing a contextual framework on the extant relationship. The panel methodological framework explores the interaction between economic fundamentals and financial variables while the use of time series methodologies developed by Phillips et al. (2011 and 2015) provide novel evidence on the detection of property price bubbles that have been manifested in each individual country of the sample. In particular, the short-run dynamic panel framework provides a robust exploratory platform thus, shedding light on the determinants of property prices (i.e. real gross domestic product, bank credit growth, long-term bond yields and real effective exchange rate) whilst the bubble detection methodologies provide evidence of the impact of credit-driven economies on the propagation of housing booms which can serve as warning signals of the potential formation of housing bubbles.",
"genre": "article",
"id": "sg:pub.10.1007/s11293-017-9531-0",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1027590",
"issn": [
"0197-4254",
"1573-9678"
],
"name": "Atlantic Economic Journal",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "45"
}
],
"keywords": [
"time series methodology",
"property prices",
"series methodology",
"property price bubbles",
"dynamic panel framework",
"residential property prices",
"Phillips et al",
"business cycle",
"economic fundamentals",
"price bubbles",
"panel framework",
"quarterly data",
"financial variables",
"housing bubble",
"housing prices",
"panel data",
"housing boom",
"advanced economies",
"development economy",
"empirical evidence",
"individual countries",
"prices",
"economy",
"extant relationships",
"bubble detection",
"methodological framework",
"determinants",
"novel evidence",
"warning signals",
"economics",
"boom",
"evidence",
"framework",
"countries",
"fundamentals",
"bubbles",
"methodology",
"exploratory platform",
"impact",
"variables",
"relationship",
"et al",
"data",
"contextual framework",
"advanced organization",
"organization",
"potential formation",
"cycle",
"light",
"end",
"al",
"means",
"use",
"samples",
"detection methodology",
"platform",
"interaction",
"formation",
"signals",
"propagation",
"paper",
"detection"
],
"name": "Determinants of Housing Prices and Bubble Detection: Evidence from Seven Advanced Economies",
"pagination": "119-131",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1084030922"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11293-017-9531-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11293-017-9531-0",
"https://app.dimensions.ai/details/publication/pub.1084030922"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_723.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11293-017-9531-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11293-017-9531-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11293-017-9531-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11293-017-9531-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11293-017-9531-0'
This table displays all metadata directly associated to this object as RDF triples.
145 TRIPLES
21 PREDICATES
90 URIs
78 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11293-017-9531-0 | schema:about | anzsrc-for:14 |
2 | ″ | ″ | anzsrc-for:1402 |
3 | ″ | ″ | anzsrc-for:1403 |
4 | ″ | schema:author | Nee3efba7ecf0427985d7f307fcb0838a |
5 | ″ | schema:citation | sg:pub.10.1007/bf00141044 |
6 | ″ | ″ | sg:pub.10.1007/s00181-015-1007-y |
7 | ″ | ″ | sg:pub.10.1007/s10258-002-0009-9 |
8 | ″ | schema:datePublished | 2017-03-06 |
9 | ″ | schema:datePublishedReg | 2017-03-06 |
10 | ″ | schema:description | This paper provides empirical evidence on the relationship between residential property prices and the business cycle for seven advanced Organisation for Economic Co-operation and Development economies over the period 2002–2015 using quarterly data. To this end, panel data and time series methodologies are adopted as a means of providing a contextual framework on the extant relationship. The panel methodological framework explores the interaction between economic fundamentals and financial variables while the use of time series methodologies developed by Phillips et al. (2011 and 2015) provide novel evidence on the detection of property price bubbles that have been manifested in each individual country of the sample. In particular, the short-run dynamic panel framework provides a robust exploratory platform thus, shedding light on the determinants of property prices (i.e. real gross domestic product, bank credit growth, long-term bond yields and real effective exchange rate) whilst the bubble detection methodologies provide evidence of the impact of credit-driven economies on the propagation of housing booms which can serve as warning signals of the potential formation of housing bubbles. |
11 | ″ | schema:genre | article |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N322ce8a007bd486cb56090196246f137 |
14 | ″ | ″ | Nd59a0f542f684238912e562ea97c5d89 |
15 | ″ | ″ | sg:journal.1027590 |
16 | ″ | schema:keywords | Phillips et al |
17 | ″ | ″ | advanced economies |
18 | ″ | ″ | advanced organization |
19 | ″ | ″ | al |
20 | ″ | ″ | boom |
21 | ″ | ″ | bubble detection |
22 | ″ | ″ | bubbles |
23 | ″ | ″ | business cycle |
24 | ″ | ″ | contextual framework |
25 | ″ | ″ | countries |
26 | ″ | ″ | cycle |
27 | ″ | ″ | data |
28 | ″ | ″ | detection |
29 | ″ | ″ | detection methodology |
30 | ″ | ″ | determinants |
31 | ″ | ″ | development economy |
32 | ″ | ″ | dynamic panel framework |
33 | ″ | ″ | economic fundamentals |
34 | ″ | ″ | economics |
35 | ″ | ″ | economy |
36 | ″ | ″ | empirical evidence |
37 | ″ | ″ | end |
38 | ″ | ″ | et al |
39 | ″ | ″ | evidence |
40 | ″ | ″ | exploratory platform |
41 | ″ | ″ | extant relationships |
42 | ″ | ″ | financial variables |
43 | ″ | ″ | formation |
44 | ″ | ″ | framework |
45 | ″ | ″ | fundamentals |
46 | ″ | ″ | housing boom |
47 | ″ | ″ | housing bubble |
48 | ″ | ″ | housing prices |
49 | ″ | ″ | impact |
50 | ″ | ″ | individual countries |
51 | ″ | ″ | interaction |
52 | ″ | ″ | light |
53 | ″ | ″ | means |
54 | ″ | ″ | methodological framework |
55 | ″ | ″ | methodology |
56 | ″ | ″ | novel evidence |
57 | ″ | ″ | organization |
58 | ″ | ″ | panel data |
59 | ″ | ″ | panel framework |
60 | ″ | ″ | paper |
61 | ″ | ″ | platform |
62 | ″ | ″ | potential formation |
63 | ″ | ″ | price bubbles |
64 | ″ | ″ | prices |
65 | ″ | ″ | propagation |
66 | ″ | ″ | property price bubbles |
67 | ″ | ″ | property prices |
68 | ″ | ″ | quarterly data |
69 | ″ | ″ | relationship |
70 | ″ | ″ | residential property prices |
71 | ″ | ″ | samples |
72 | ″ | ″ | series methodology |
73 | ″ | ″ | signals |
74 | ″ | ″ | time series methodology |
75 | ″ | ″ | use |
76 | ″ | ″ | variables |
77 | ″ | ″ | warning signals |
78 | ″ | schema:name | Determinants of Housing Prices and Bubble Detection: Evidence from Seven Advanced Economies |
79 | ″ | schema:pagination | 119-131 |
80 | ″ | schema:productId | N4a416e1cfb804c818d7865f5eb471469 |
81 | ″ | ″ | Nfc77dae6b86e4f4a83f7940416fa972b |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1084030922 |
83 | ″ | ″ | https://doi.org/10.1007/s11293-017-9531-0 |
84 | ″ | schema:sdDatePublished | 2022-08-04T17:04 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | Nc1b273a7c7a44c15a1a8576634ae9782 |
87 | ″ | schema:url | https://doi.org/10.1007/s11293-017-9531-0 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N30cbd46d80c54b88a9f87687ac03cee4 | rdf:first | sg:person.014003674721.38 |
92 | ″ | rdf:rest | rdf:nil |
93 | N322ce8a007bd486cb56090196246f137 | schema:volumeNumber | 45 |
94 | ″ | rdf:type | schema:PublicationVolume |
95 | N4a416e1cfb804c818d7865f5eb471469 | schema:name | doi |
96 | ″ | schema:value | 10.1007/s11293-017-9531-0 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | Nc1b273a7c7a44c15a1a8576634ae9782 | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | Nd59a0f542f684238912e562ea97c5d89 | schema:issueNumber | 1 |
101 | ″ | rdf:type | schema:PublicationIssue |
102 | Nee3efba7ecf0427985d7f307fcb0838a | rdf:first | sg:person.010240256167.14 |
103 | ″ | rdf:rest | N30cbd46d80c54b88a9f87687ac03cee4 |
104 | Nfc77dae6b86e4f4a83f7940416fa972b | schema:name | dimensions_id |
105 | ″ | schema:value | pub.1084030922 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | anzsrc-for:14 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Economics |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:1402 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Applied Economics |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:1403 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Econometrics |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1027590 | schema:issn | 0197-4254 |
117 | ″ | ″ | 1573-9678 |
118 | ″ | schema:name | Atlantic Economic Journal |
119 | ″ | schema:publisher | Springer Nature |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.010240256167.14 | schema:affiliation | grid-institutes:None |
122 | ″ | schema:familyName | Vogiazas |
123 | ″ | schema:givenName | Sofoklis |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010240256167.14 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.014003674721.38 | schema:affiliation | grid-institutes:grid.12026.37 |
127 | ″ | schema:familyName | Alexiou |
128 | ″ | schema:givenName | Constantinos |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003674721.38 |
130 | ″ | rdf:type | schema:Person |
131 | sg:pub.10.1007/bf00141044 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003021595 |
132 | ″ | ″ | https://doi.org/10.1007/bf00141044 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | sg:pub.10.1007/s00181-015-1007-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005859828 |
135 | ″ | ″ | https://doi.org/10.1007/s00181-015-1007-y |
136 | ″ | rdf:type | schema:CreativeWork |
137 | sg:pub.10.1007/s10258-002-0009-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004421921 |
138 | ″ | ″ | https://doi.org/10.1007/s10258-002-0009-9 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | grid-institutes:None | schema:alternateName | Black Sea Trade and Development Bank, 1 Komninon Str., 546 22 Thessaloniki, Greece |
141 | ″ | schema:name | Black Sea Trade and Development Bank, 1 Komninon Str., 546 22 Thessaloniki, Greece |
142 | ″ | rdf:type | schema:Organization |
143 | grid-institutes:grid.12026.37 | schema:alternateName | Cranfield School of Management, College Rd, MK43 0AL, Cranfield, UK |
144 | ″ | schema:name | Cranfield School of Management, College Rd, MK43 0AL, Cranfield, UK |
145 | ″ | rdf:type | schema:Organization |