Aggregate location recommendation in dynamic transportation networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Jianmin Li, Yan Wang, Ying Zhong, Danhuai Guo, Shunzhi Zhu

ABSTRACT

Travel planning and location recommendation are increasingly important in recent years. In this light, we propose and study a novel aggregate location recommendation query (ALRQ) of discovering aggregate locations for multiple travelers and planning the corresponding travel routes in dynamic transportation networks. Assuming the scenario that multiple travelers target the same destination, given a set of travelers’ locations Q, a set of potential aggregate location O, and a departure time t, the ALRQ finds an aggregate location o ∈ O that has the minimum global travel time ∑q∈QT(q,o,t), where T(q,o,t) is the travel time between o and q with departure time t. The ALRQ problem is challenging due to three reasons: (1) how to model the dynamic transportation networks practically, and (2) how to compute ALRQ efficiently. We take two types of dynamic transportation networks into account, and we define a pair of upper and lower bounds to prune the search space effectively. Moreover, a heuristic scheduling strategy is adopted to schedule multiple query sources. Finally, we conducted extensive experiments on real and synthetic spatial data to verify the performance of the developed algorithms. More... »

PAGES

1637-1653

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11280-017-0496-3

DOI

http://dx.doi.org/10.1007/s11280-017-0496-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092101289


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiamen University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.449836.4", 
          "name": [
            "School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jianmin", 
        "id": "sg:person.013115724752.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115724752.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.449836.4", 
          "name": [
            "School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yan", 
        "id": "sg:person.010201455477.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201455477.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.449836.4", 
          "name": [
            "School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ying", 
        "id": "sg:person.014510665752.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510665752.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Network Information Center", 
          "id": "https://www.grid.ac/institutes/grid.433146.7", 
          "name": [
            "Guangdong Province Key Laboratory of Popular High Performance Computers of Shenzhen University, 3688 Nanhai Ave, Nanshan Qu, 518060, Shenzhen Shi, Guangdong Sheng, China", 
            "Guangdong Provincial Big Data Collaborative Innovation Center, Shenzhen University, 3688 Nanhai Ave, Nanshan Qu, 518060, Shenzhen Shi, Guangdong Sheng, China", 
            "CNIC, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Danhuai", 
        "id": "sg:person.01346506665.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346506665.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.449836.4", 
          "name": [
            "School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Shunzhi", 
        "id": "sg:person.010410713337.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410713337.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2835776.2835808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000178796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.09.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001270793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1739041.1739084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002434383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2452376.2452393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007630076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40235-7_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007841490", 
          "https://doi.org/10.1007/978-3-642-40235-7_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-013-0331-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582668", 
          "https://doi.org/10.1007/s00778-013-0331-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-011-0144-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011493980", 
          "https://doi.org/10.1007/s10707-011-0144-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2623330.2623617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011561570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11280-015-0374-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013851519", 
          "https://doi.org/10.1007/s11280-015-0374-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.02.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014972490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11280-016-0425-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018538726", 
          "https://doi.org/10.1007/s11280-016-0425-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11280-016-0425-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018538726", 
          "https://doi.org/10.1007/s11280-016-0425-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2247596.2247616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019265389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2592784.2592787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025007779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2835776.2835778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028048188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1353343.1353371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029580252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-015-0227-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029908035", 
          "https://doi.org/10.1007/s10707-015-0227-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2424321.2424356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030013893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2093973.2093999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032863297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-016-1653-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033837685", 
          "https://doi.org/10.1007/s11390-016-1653-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-016-1653-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033837685", 
          "https://doi.org/10.1007/s11390-016-1653-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-014-0221-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035680575", 
          "https://doi.org/10.1007/s10707-014-0221-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1071610.1071616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037326919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-016-0272-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039588662", 
          "https://doi.org/10.1007/s10707-016-0272-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-016-0272-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039588662", 
          "https://doi.org/10.1007/s10707-016-0272-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716633", 
          "https://doi.org/10.1007/bf01386390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.05.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042665572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1869790.1869804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042878179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.02.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044371372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2389241.2389248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049122051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2015.2403356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2332764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2013.160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2013.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2014.2382583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2015.2509998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061663199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2016.2598171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061663333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2521602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tssc.1968.300136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061806130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2536274.2536276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067368221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2536360.2536375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067368320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2996913.2996964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083882663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.08.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084098298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2017.2685504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084206682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-017-0305-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090933867", 
          "https://doi.org/10.1007/s10707-017-0305-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-017-0305-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090933867", 
          "https://doi.org/10.1007/s10707-017-0305-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/3137628.3137630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091641263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2014.6816646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093197961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2013.6544829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093273710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mdm.2013.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093306130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mdm.2013.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093372931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2004.1320006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093638042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mdm.2014.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093665331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mdm.2013.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093934596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icccn.2014.6911842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094137387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2015.7113389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094175641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2013.6544828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094411451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2015.7113290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095304866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2016.7498309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095681275"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Travel planning and location recommendation are increasingly important in recent years. In this light, we propose and study a novel aggregate location recommendation query (ALRQ) of discovering aggregate locations for multiple travelers and planning the corresponding travel routes in dynamic transportation networks. Assuming the scenario that multiple travelers target the same destination, given a set of travelers\u2019 locations Q, a set of potential aggregate location O, and a departure time t, the ALRQ finds an aggregate location o \u2208 O that has the minimum global travel time \u2211q\u2208QT(q,o,t), where T(q,o,t) is the travel time between o and q with departure time t. The ALRQ problem is challenging due to three reasons: (1) how to model the dynamic transportation networks practically, and (2) how to compute ALRQ efficiently. We take two types of dynamic transportation networks into account, and we define a pair of upper and lower bounds to prune the search space effectively. Moreover, a heuristic scheduling strategy is adopted to schedule multiple query sources. Finally, we conducted extensive experiments on real and synthetic spatial data to verify the performance of the developed algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11280-017-0496-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136663", 
        "issn": [
          "1386-145X", 
          "1573-1413"
        ], 
        "name": "World Wide Web", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Aggregate location recommendation in dynamic transportation networks", 
    "pagination": "1637-1653", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a0d26e453fc5c4660c8f4c723c1ba3e1c9a5d70f87936b49fc8cac3cf0442cf2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11280-017-0496-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092101289"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11280-017-0496-3", 
      "https://app.dimensions.ai/details/publication/pub.1092101289"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11280-017-0496-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11280-017-0496-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11280-017-0496-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11280-017-0496-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11280-017-0496-3'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11280-017-0496-3 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N743bb7e03aa5456d85c1b66076dbbe10
4 schema:citation sg:pub.10.1007/978-3-642-40235-7_8
5 sg:pub.10.1007/bf01386390
6 sg:pub.10.1007/s00778-013-0331-0
7 sg:pub.10.1007/s10707-011-0144-5
8 sg:pub.10.1007/s10707-014-0221-7
9 sg:pub.10.1007/s10707-015-0227-9
10 sg:pub.10.1007/s10707-016-0272-z
11 sg:pub.10.1007/s10707-017-0305-2
12 sg:pub.10.1007/s11280-015-0374-9
13 sg:pub.10.1007/s11280-016-0425-x
14 sg:pub.10.1007/s11390-016-1653-3
15 https://doi.org/10.1016/j.neucom.2015.09.119
16 https://doi.org/10.1016/j.neucom.2016.02.084
17 https://doi.org/10.1016/j.neucom.2016.02.085
18 https://doi.org/10.1016/j.neucom.2016.05.081
19 https://doi.org/10.1016/j.neucom.2016.08.138
20 https://doi.org/10.1109/icccn.2014.6911842
21 https://doi.org/10.1109/icde.2004.1320006
22 https://doi.org/10.1109/icde.2013.6544828
23 https://doi.org/10.1109/icde.2013.6544829
24 https://doi.org/10.1109/icde.2014.6816646
25 https://doi.org/10.1109/icde.2015.7113290
26 https://doi.org/10.1109/icde.2015.7113389
27 https://doi.org/10.1109/icde.2016.7498309
28 https://doi.org/10.1109/mdm.2013.34
29 https://doi.org/10.1109/mdm.2013.49
30 https://doi.org/10.1109/mdm.2013.50
31 https://doi.org/10.1109/mdm.2014.66
32 https://doi.org/10.1109/tcyb.2015.2403356
33 https://doi.org/10.1109/tip.2014.2332764
34 https://doi.org/10.1109/tkde.2013.160
35 https://doi.org/10.1109/tkde.2013.89
36 https://doi.org/10.1109/tkde.2014.2382583
37 https://doi.org/10.1109/tkde.2015.2509998
38 https://doi.org/10.1109/tkde.2016.2598171
39 https://doi.org/10.1109/tkde.2017.2685504
40 https://doi.org/10.1109/tnnls.2016.2521602
41 https://doi.org/10.1109/tssc.1968.300136
42 https://doi.org/10.1145/1071610.1071616
43 https://doi.org/10.1145/1353343.1353371
44 https://doi.org/10.1145/1739041.1739084
45 https://doi.org/10.1145/1869790.1869804
46 https://doi.org/10.1145/2093973.2093999
47 https://doi.org/10.1145/2247596.2247616
48 https://doi.org/10.1145/2389241.2389248
49 https://doi.org/10.1145/2424321.2424356
50 https://doi.org/10.1145/2452376.2452393
51 https://doi.org/10.1145/2592784.2592787
52 https://doi.org/10.1145/2623330.2623617
53 https://doi.org/10.1145/2835776.2835778
54 https://doi.org/10.1145/2835776.2835808
55 https://doi.org/10.1145/2996913.2996964
56 https://doi.org/10.14778/2536274.2536276
57 https://doi.org/10.14778/2536360.2536375
58 https://doi.org/10.14778/3137628.3137630
59 schema:datePublished 2018-11
60 schema:datePublishedReg 2018-11-01
61 schema:description Travel planning and location recommendation are increasingly important in recent years. In this light, we propose and study a novel aggregate location recommendation query (ALRQ) of discovering aggregate locations for multiple travelers and planning the corresponding travel routes in dynamic transportation networks. Assuming the scenario that multiple travelers target the same destination, given a set of travelers’ locations Q, a set of potential aggregate location O, and a departure time t, the ALRQ finds an aggregate location o ∈ O that has the minimum global travel time ∑q∈QT(q,o,t), where T(q,o,t) is the travel time between o and q with departure time t. The ALRQ problem is challenging due to three reasons: (1) how to model the dynamic transportation networks practically, and (2) how to compute ALRQ efficiently. We take two types of dynamic transportation networks into account, and we define a pair of upper and lower bounds to prune the search space effectively. Moreover, a heuristic scheduling strategy is adopted to schedule multiple query sources. Finally, we conducted extensive experiments on real and synthetic spatial data to verify the performance of the developed algorithms.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N28bdc519d00a4f3283d69d02dd7ad83c
66 N49a167bedaf44239aa6bbc6bf90b6acc
67 sg:journal.1136663
68 schema:name Aggregate location recommendation in dynamic transportation networks
69 schema:pagination 1637-1653
70 schema:productId N06815e75346248359e511aeb09715c3d
71 Nbca5739d9ce945309af692c4a943b10e
72 Nf79a18457d6b43abb8348fce8b16e197
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092101289
74 https://doi.org/10.1007/s11280-017-0496-3
75 schema:sdDatePublished 2019-04-10T20:07
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N3cb36da089564adab351b739420811ef
78 schema:url https://link.springer.com/10.1007%2Fs11280-017-0496-3
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N06815e75346248359e511aeb09715c3d schema:name doi
83 schema:value 10.1007/s11280-017-0496-3
84 rdf:type schema:PropertyValue
85 N0bcb9d5873d849188e68bea5e4422889 rdf:first sg:person.01346506665.38
86 rdf:rest N1287a1805ccc44889da167e57a4a2399
87 N1287a1805ccc44889da167e57a4a2399 rdf:first sg:person.010410713337.97
88 rdf:rest rdf:nil
89 N28bdc519d00a4f3283d69d02dd7ad83c schema:volumeNumber 21
90 rdf:type schema:PublicationVolume
91 N3cb36da089564adab351b739420811ef schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N49a167bedaf44239aa6bbc6bf90b6acc schema:issueNumber 6
94 rdf:type schema:PublicationIssue
95 N743bb7e03aa5456d85c1b66076dbbe10 rdf:first sg:person.013115724752.74
96 rdf:rest N9ea2d598dccf4af2b1bb44240d260705
97 N9ea2d598dccf4af2b1bb44240d260705 rdf:first sg:person.010201455477.37
98 rdf:rest Nf085c5ad58f449c79ddb4cae1c67a25e
99 Nbca5739d9ce945309af692c4a943b10e schema:name readcube_id
100 schema:value a0d26e453fc5c4660c8f4c723c1ba3e1c9a5d70f87936b49fc8cac3cf0442cf2
101 rdf:type schema:PropertyValue
102 Nf085c5ad58f449c79ddb4cae1c67a25e rdf:first sg:person.014510665752.14
103 rdf:rest N0bcb9d5873d849188e68bea5e4422889
104 Nf79a18457d6b43abb8348fce8b16e197 schema:name dimensions_id
105 schema:value pub.1092101289
106 rdf:type schema:PropertyValue
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information Systems
112 rdf:type schema:DefinedTerm
113 sg:journal.1136663 schema:issn 1386-145X
114 1573-1413
115 schema:name World Wide Web
116 rdf:type schema:Periodical
117 sg:person.010201455477.37 schema:affiliation https://www.grid.ac/institutes/grid.449836.4
118 schema:familyName Wang
119 schema:givenName Yan
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201455477.37
121 rdf:type schema:Person
122 sg:person.010410713337.97 schema:affiliation https://www.grid.ac/institutes/grid.449836.4
123 schema:familyName Zhu
124 schema:givenName Shunzhi
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410713337.97
126 rdf:type schema:Person
127 sg:person.013115724752.74 schema:affiliation https://www.grid.ac/institutes/grid.449836.4
128 schema:familyName Li
129 schema:givenName Jianmin
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115724752.74
131 rdf:type schema:Person
132 sg:person.01346506665.38 schema:affiliation https://www.grid.ac/institutes/grid.433146.7
133 schema:familyName Guo
134 schema:givenName Danhuai
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346506665.38
136 rdf:type schema:Person
137 sg:person.014510665752.14 schema:affiliation https://www.grid.ac/institutes/grid.449836.4
138 schema:familyName Zhong
139 schema:givenName Ying
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014510665752.14
141 rdf:type schema:Person
142 sg:pub.10.1007/978-3-642-40235-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007841490
143 https://doi.org/10.1007/978-3-642-40235-7_8
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
146 https://doi.org/10.1007/bf01386390
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00778-013-0331-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582668
149 https://doi.org/10.1007/s00778-013-0331-0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10707-011-0144-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011493980
152 https://doi.org/10.1007/s10707-011-0144-5
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10707-014-0221-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035680575
155 https://doi.org/10.1007/s10707-014-0221-7
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10707-015-0227-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029908035
158 https://doi.org/10.1007/s10707-015-0227-9
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10707-016-0272-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039588662
161 https://doi.org/10.1007/s10707-016-0272-z
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10707-017-0305-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090933867
164 https://doi.org/10.1007/s10707-017-0305-2
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s11280-015-0374-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013851519
167 https://doi.org/10.1007/s11280-015-0374-9
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s11280-016-0425-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018538726
170 https://doi.org/10.1007/s11280-016-0425-x
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s11390-016-1653-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033837685
173 https://doi.org/10.1007/s11390-016-1653-3
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neucom.2015.09.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001270793
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.neucom.2016.02.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044371372
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.neucom.2016.02.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014972490
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.neucom.2016.05.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665572
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neucom.2016.08.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084098298
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/icccn.2014.6911842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094137387
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/icde.2004.1320006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093638042
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/icde.2013.6544828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094411451
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/icde.2013.6544829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093273710
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/icde.2014.6816646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093197961
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/icde.2015.7113290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095304866
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/icde.2015.7113389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094175641
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/icde.2016.7498309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095681275
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/mdm.2013.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093934596
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/mdm.2013.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093372931
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/mdm.2013.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093306130
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/mdm.2014.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093665331
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tcyb.2015.2403356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579950
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tip.2014.2332764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644029
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tkde.2013.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662744
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tkde.2013.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662841
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tkde.2014.2382583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662997
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tkde.2015.2509998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061663199
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tkde.2016.2598171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061663333
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tkde.2017.2685504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084206682
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tnnls.2016.2521602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719115
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tssc.1968.300136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061806130
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1145/1071610.1071616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037326919
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1145/1353343.1353371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029580252
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1145/1739041.1739084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002434383
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1145/1869790.1869804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042878179
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1145/2093973.2093999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032863297
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1145/2247596.2247616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019265389
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1145/2389241.2389248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049122051
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1145/2424321.2424356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030013893
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1145/2452376.2452393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007630076
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1145/2592784.2592787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025007779
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1145/2623330.2623617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011561570
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1145/2835776.2835778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048188
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1145/2835776.2835808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000178796
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1145/2996913.2996964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083882663
256 rdf:type schema:CreativeWork
257 https://doi.org/10.14778/2536274.2536276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067368221
258 rdf:type schema:CreativeWork
259 https://doi.org/10.14778/2536360.2536375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067368320
260 rdf:type schema:CreativeWork
261 https://doi.org/10.14778/3137628.3137630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091641263
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.433146.7 schema:alternateName Computer Network Information Center
264 schema:name CNIC, Chinese Academy of Sciences, Beijing, China
265 Guangdong Province Key Laboratory of Popular High Performance Computers of Shenzhen University, 3688 Nanhai Ave, Nanshan Qu, 518060, Shenzhen Shi, Guangdong Sheng, China
266 Guangdong Provincial Big Data Collaborative Innovation Center, Shenzhen University, 3688 Nanhai Ave, Nanshan Qu, 518060, Shenzhen Shi, Guangdong Sheng, China
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.449836.4 schema:alternateName Xiamen University of Technology
269 schema:name School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...