Like-minded communities: bringing the familiarity and similarity together View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09

AUTHORS

Natwar Modani, Seema Nagar, Saswata Shannigrahi, Ritesh Gupta, Kuntal Dey, Saurabh Goyal, Amit A. Nanavati

ABSTRACT

Community detection in social networks is a well-studied problem. A community in social network is commonly defined as a group of people whose interactions within the group are more than outside the group. It is believed that people’s behavior can be linked to the behavior of their social neighborhood. While shared characteristics of communities have been used to validate the communities found, to the best of authors’ knowledge, it is not demonstrated in the literature that communities found using social interaction data are like-minded, i.e., they behave similarly in terms of their interest in items (e.g., movie, products). In this paper, we experimentally demonstrate, on a social networking movie rating dataset, that people who are interested in an item are socially better connected than the overall graph. Motivated by this fact, we propose a method for finding communities wherein like-mindedness is an explicit objective. We find small tight groups with many shared interests using a frequent item set mining approach and use these as building blocks for the core of these like-minded communities. We show that these communities have higher similarity in their interests compared to communities found using only the interaction information. We also compare our method against a baseline where the weight of edges are defined based on similarity in interests between nodes and show that our approach achieves far higher level of like-mindedness amongst the communities compared to this baseline as well. More... »

PAGES

899-919

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11280-013-0261-1

DOI

http://dx.doi.org/10.1007/s11280-013-0261-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049725348


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Modani", 
        "givenName": "Natwar", 
        "id": "sg:person.015525000542.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525000542.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagar", 
        "givenName": "Seema", 
        "id": "sg:person.011063737116.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011063737116.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Guwahati", 
          "id": "https://www.grid.ac/institutes/grid.417972.e", 
          "name": [
            "IBM Research, New Delhi, India", 
            "Indian Institute of Technology (IIT), Guwahati, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shannigrahi", 
        "givenName": "Saswata", 
        "id": "sg:person.015773657653.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773657653.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, New Delhi, India", 
            "Google India, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Ritesh", 
        "id": "sg:person.016131055015.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016131055015.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dey", 
        "givenName": "Kuntal", 
        "id": "sg:person.012701231562.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701231562.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "IBM Research, New Delhi, India", 
            "Indian Institute of Technology (IIT), Bombay, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goyal", 
        "givenName": "Saurabh", 
        "id": "sg:person.011020744615.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020744615.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nanavati", 
        "givenName": "Amit A.", 
        "id": "sg:person.015375033657.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015375033657.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1639714.1639725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002173969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/371920.372071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002434259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1458082.1458288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002666279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10677-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005951911", 
          "https://doi.org/10.1007/978-3-642-10677-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10677-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005951911", 
          "https://doi.org/10.1007/978-3-642-10677-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-010-0186-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007740874", 
          "https://doi.org/10.1007/s10618-010-0186-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1639714.1639744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010414615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73078-1_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013348890", 
          "https://doi.org/10.1007/978-3-540-73078-1_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73078-1_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013348890", 
          "https://doi.org/10.1007/978-3-540-73078-1_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1401890.1401957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014077627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1353343.1353424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017095509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/233269.233311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019413618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:dami.0000005258.31418.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019489501", 
          "https://doi.org/10.1023/b:dami.0000005258.31418.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956750.956779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022691160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1242572.1242635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026206847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1639714.1639731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028195178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/276627.276652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028742218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/312624.312682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029340069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1871437.1871469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034194727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10550-006-0080-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035019021", 
          "https://doi.org/10.1007/s10550-006-0080-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10550-006-0080-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035019021", 
          "https://doi.org/10.1007/s10550-006-0080-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.036122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038979821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.036122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038979821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1830252.1830268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046343136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/69.846291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061213826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2010.271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wi.2007.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093413114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccnc.2006.1593032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093464937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cw.2008.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095018288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/imsaa.2011.6156357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095069928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cason.2011.6085937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095112447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcomw.2011.5928942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095332862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2012.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095721730"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "Community detection in social networks is a well-studied problem. A community in social network is commonly defined as a group of people whose interactions within the group are more than outside the group. It is believed that people\u2019s behavior can be linked to the behavior of their social neighborhood. While shared characteristics of communities have been used to validate the communities found, to the best of authors\u2019 knowledge, it is not demonstrated in the literature that communities found using social interaction data are like-minded, i.e., they behave similarly in terms of their interest in items (e.g., movie, products). In this paper, we experimentally demonstrate, on a social networking movie rating dataset, that people who are interested in an item are socially better connected than the overall graph. Motivated by this fact, we propose a method for finding communities wherein like-mindedness is an explicit objective. We find small tight groups with many shared interests using a frequent item set mining approach and use these as building blocks for the core of these like-minded communities. We show that these communities have higher similarity in their interests compared to communities found using only the interaction information. We also compare our method against a baseline where the weight of edges are defined based on similarity in interests between nodes and show that our approach achieves far higher level of like-mindedness amongst the communities compared to this baseline as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11280-013-0261-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136663", 
        "issn": [
          "1386-145X", 
          "1573-1413"
        ], 
        "name": "World Wide Web", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Like-minded communities: bringing the familiarity and similarity together", 
    "pagination": "899-919", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ece00a937e423458317db15b20ffdad2dc1d280770b226e2a7f4ad98e7a0e29d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11280-013-0261-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049725348"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11280-013-0261-1", 
      "https://app.dimensions.ai/details/publication/pub.1049725348"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11280-013-0261-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11280-013-0261-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11280-013-0261-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11280-013-0261-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11280-013-0261-1'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11280-013-0261-1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3bb4b69c0815427cbdf4119859fa899e
4 schema:citation sg:pub.10.1007/978-3-540-73078-1_28
5 sg:pub.10.1007/978-3-642-10677-4_20
6 sg:pub.10.1007/s10550-006-0080-3
7 sg:pub.10.1007/s10618-010-0186-6
8 sg:pub.10.1023/b:dami.0000005258.31418.83
9 sg:pub.10.1038/nature03607
10 https://doi.org/10.1016/j.physrep.2009.11.002
11 https://doi.org/10.1073/pnas.122653799
12 https://doi.org/10.1103/physreve.68.036122
13 https://doi.org/10.1103/physreve.69.066133
14 https://doi.org/10.1103/physreve.70.066111
15 https://doi.org/10.1109/69.846291
16 https://doi.org/10.1109/cason.2011.6085937
17 https://doi.org/10.1109/ccnc.2006.1593032
18 https://doi.org/10.1109/cw.2008.13
19 https://doi.org/10.1109/icde.2012.77
20 https://doi.org/10.1109/imsaa.2011.6156357
21 https://doi.org/10.1109/infcomw.2011.5928942
22 https://doi.org/10.1109/tkde.2010.271
23 https://doi.org/10.1109/wi.2007.43
24 https://doi.org/10.1145/1242572.1242635
25 https://doi.org/10.1145/1353343.1353424
26 https://doi.org/10.1145/1401890.1401957
27 https://doi.org/10.1145/1458082.1458288
28 https://doi.org/10.1145/1639714.1639725
29 https://doi.org/10.1145/1639714.1639731
30 https://doi.org/10.1145/1639714.1639744
31 https://doi.org/10.1145/1830252.1830268
32 https://doi.org/10.1145/1871437.1871469
33 https://doi.org/10.1145/233269.233311
34 https://doi.org/10.1145/276627.276652
35 https://doi.org/10.1145/312624.312682
36 https://doi.org/10.1145/371920.372071
37 https://doi.org/10.1145/956750.956779
38 schema:datePublished 2014-09
39 schema:datePublishedReg 2014-09-01
40 schema:description Community detection in social networks is a well-studied problem. A community in social network is commonly defined as a group of people whose interactions within the group are more than outside the group. It is believed that people’s behavior can be linked to the behavior of their social neighborhood. While shared characteristics of communities have been used to validate the communities found, to the best of authors’ knowledge, it is not demonstrated in the literature that communities found using social interaction data are like-minded, i.e., they behave similarly in terms of their interest in items (e.g., movie, products). In this paper, we experimentally demonstrate, on a social networking movie rating dataset, that people who are interested in an item are socially better connected than the overall graph. Motivated by this fact, we propose a method for finding communities wherein like-mindedness is an explicit objective. We find small tight groups with many shared interests using a frequent item set mining approach and use these as building blocks for the core of these like-minded communities. We show that these communities have higher similarity in their interests compared to communities found using only the interaction information. We also compare our method against a baseline where the weight of edges are defined based on similarity in interests between nodes and show that our approach achieves far higher level of like-mindedness amongst the communities compared to this baseline as well.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N9e08130f512e4586aff9efcac6873222
45 Ne6d52fd387e5449da2f65fa1dce85591
46 sg:journal.1136663
47 schema:name Like-minded communities: bringing the familiarity and similarity together
48 schema:pagination 899-919
49 schema:productId N2f1e646bb2b449b19ebd6a9b01f886fb
50 N8ce71f26f06d43739e67391e66b128f7
51 N91872da891e44e06b15e7f3025c2a4df
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725348
53 https://doi.org/10.1007/s11280-013-0261-1
54 schema:sdDatePublished 2019-04-10T18:23
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N0c2500af9a5d46ce8ead6d5ddee65def
57 schema:url http://link.springer.com/10.1007%2Fs11280-013-0261-1
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0c2500af9a5d46ce8ead6d5ddee65def schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N20ba4427f9bb46868af797ebdb2a4555 rdf:first sg:person.012701231562.41
64 rdf:rest N2bb1db0902a84b51bfa62baa878d133e
65 N2bb1db0902a84b51bfa62baa878d133e rdf:first sg:person.011020744615.44
66 rdf:rest N8b374e7046db4919b28896d479c183a1
67 N2f1e646bb2b449b19ebd6a9b01f886fb schema:name dimensions_id
68 schema:value pub.1049725348
69 rdf:type schema:PropertyValue
70 N3bb4b69c0815427cbdf4119859fa899e rdf:first sg:person.015525000542.93
71 rdf:rest N7baf0c045b4d4703957ba1bd272c6d5a
72 N5930869088114be8aedfec5ecf3c0456 rdf:first sg:person.016131055015.62
73 rdf:rest N20ba4427f9bb46868af797ebdb2a4555
74 N7baf0c045b4d4703957ba1bd272c6d5a rdf:first sg:person.011063737116.13
75 rdf:rest Nbdcc737c87f24d16baedf06176dd11cc
76 N8b374e7046db4919b28896d479c183a1 rdf:first sg:person.015375033657.34
77 rdf:rest rdf:nil
78 N8ce71f26f06d43739e67391e66b128f7 schema:name doi
79 schema:value 10.1007/s11280-013-0261-1
80 rdf:type schema:PropertyValue
81 N91872da891e44e06b15e7f3025c2a4df schema:name readcube_id
82 schema:value ece00a937e423458317db15b20ffdad2dc1d280770b226e2a7f4ad98e7a0e29d
83 rdf:type schema:PropertyValue
84 N9e08130f512e4586aff9efcac6873222 schema:issueNumber 5
85 rdf:type schema:PublicationIssue
86 Nbdcc737c87f24d16baedf06176dd11cc rdf:first sg:person.015773657653.22
87 rdf:rest N5930869088114be8aedfec5ecf3c0456
88 Ne6d52fd387e5449da2f65fa1dce85591 schema:volumeNumber 17
89 rdf:type schema:PublicationVolume
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information Systems
95 rdf:type schema:DefinedTerm
96 sg:journal.1136663 schema:issn 1386-145X
97 1573-1413
98 schema:name World Wide Web
99 rdf:type schema:Periodical
100 sg:person.011020744615.44 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
101 schema:familyName Goyal
102 schema:givenName Saurabh
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020744615.44
104 rdf:type schema:Person
105 sg:person.011063737116.13 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
106 schema:familyName Nagar
107 schema:givenName Seema
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011063737116.13
109 rdf:type schema:Person
110 sg:person.012701231562.41 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
111 schema:familyName Dey
112 schema:givenName Kuntal
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701231562.41
114 rdf:type schema:Person
115 sg:person.015375033657.34 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
116 schema:familyName Nanavati
117 schema:givenName Amit A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015375033657.34
119 rdf:type schema:Person
120 sg:person.015525000542.93 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
121 schema:familyName Modani
122 schema:givenName Natwar
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525000542.93
124 rdf:type schema:Person
125 sg:person.015773657653.22 schema:affiliation https://www.grid.ac/institutes/grid.417972.e
126 schema:familyName Shannigrahi
127 schema:givenName Saswata
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773657653.22
129 rdf:type schema:Person
130 sg:person.016131055015.62 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
131 schema:familyName Gupta
132 schema:givenName Ritesh
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016131055015.62
134 rdf:type schema:Person
135 sg:pub.10.1007/978-3-540-73078-1_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013348890
136 https://doi.org/10.1007/978-3-540-73078-1_28
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-642-10677-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005951911
139 https://doi.org/10.1007/978-3-642-10677-4_20
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10550-006-0080-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035019021
142 https://doi.org/10.1007/s10550-006-0080-3
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10618-010-0186-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740874
145 https://doi.org/10.1007/s10618-010-0186-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/b:dami.0000005258.31418.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019489501
148 https://doi.org/10.1023/b:dami.0000005258.31418.83
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
151 https://doi.org/10.1038/nature03607
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physreve.68.036122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038979821
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physreve.69.066133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039022482
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physreve.70.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552384
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/69.846291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061213826
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/cason.2011.6085937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095112447
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/ccnc.2006.1593032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093464937
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/cw.2008.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095018288
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/icde.2012.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095721730
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/imsaa.2011.6156357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095069928
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/infcomw.2011.5928942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095332862
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tkde.2010.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662263
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/wi.2007.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093413114
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1145/1242572.1242635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026206847
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/1353343.1353424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017095509
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/1401890.1401957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014077627
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/1458082.1458288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002666279
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/1639714.1639725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002173969
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/1639714.1639731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028195178
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1145/1639714.1639744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010414615
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/1830252.1830268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046343136
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/1871437.1871469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034194727
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/233269.233311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019413618
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1145/276627.276652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028742218
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1145/312624.312682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029340069
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1145/371920.372071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002434259
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1145/956750.956779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022691160
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.417971.d schema:alternateName Indian Institute of Technology Bombay
210 schema:name IBM Research, New Delhi, India
211 Indian Institute of Technology (IIT), Bombay, India
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.417972.e schema:alternateName Indian Institute of Technology Guwahati
214 schema:name IBM Research, New Delhi, India
215 Indian Institute of Technology (IIT), Guwahati, India
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
218 schema:name Google India, New Delhi, India
219 IBM Research, New Delhi, India
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...