MSoC: Multi-scale Optimized Clustering for Energy Preservation in Wireless Sensor Network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

A. P. Jyothi, S. Usha

ABSTRACT

Energy efficient clustering has always been the center of attention among the research community pertaining to wireless sensor network (WSN). Till last decade, there have been significant studies towards clustering technique as well as energy efficiency, but no robust solution has yet been evolved. Therefore, this manuscript introduces a unique optimization scheme for the purpose of enhancing the clustering techniques. The technique is called as MSoC or multi-scale optimized clustering, where a novel clustering technique is shown with an aid of single and multi-level clustering approximation method. The technique also introduces a concept of RF Transceiver that can solve the energy problems in data aggregation for large scale WSN. The result acquired from the study exhibits to better performance with respect to energy conservation on higher number of simulation rounds till date in comparison to existing techniques. More... »

PAGES

1309-1328

References to SciGraph publications

  • 2013. Homogeneous and Heterogeneous Energy Schemes for Hierarchical Cluster Based Routing Protocols in WSN: A Survey in PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON TRENDS IN INFORMATION, TELECOMMUNICATION AND COMPUTING
  • 2015-12. LEAUCH: low-energy adaptive uneven clustering hierarchy for cognitive radio sensor network in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • 2011-02. An energy-driven unequal clustering protocol for heterogeneous wireless sensor networks in JOURNAL OF CONTROL THEORY AND APPLICATIONS
  • 2007-12. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data in BMC BIOINFORMATICS
  • 2014. Energy-Efficient Cluster-Based Aggregation Protocol for Heterogeneous Wireless Sensor Networks in INTELLIGENT COMPUTING, NETWORKING, AND INFORMATICS
  • 2016-11. An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks in WIRELESS NETWORKS
  • 2015. An Improved BAT-Optimized Cluster-Based Routing for Wireless Sensor Networks in INTELLIGENT COMPUTING AND APPLICATIONS
  • 2014. An Ant Voronoi Based Clustering Approach for Wireless Sensor Networks in AD HOC NETWORKS
  • 2016. A Novel Cuckoo Search Based Clustering Algorithm for Wireless Sensor Networks in ADVANCED COMPUTER AND COMMUNICATION ENGINEERING TECHNOLOGY
  • 2012. Energy Efficient Hierarchical Clustering Routing Protocol for Wireless Sensor Networks in ADVANCES IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY. NETWORKS AND COMMUNICATIONS
  • 2010. Survey on Data Routing in Wireless Sensor Networks in WIRELESS SENSOR NETWORK TECHNOLOGIES FOR THE INFORMATION EXPLOSION ERA
  • 2014. MAP: An Optimized Energy-Efficient Cluster Header Selection Technique for Wireless Sensor Networks in ADVANCES IN COMPUTER SCIENCE AND ITS APPLICATIONS
  • 2011. DESC: Distributed Energy Efficient Scheme to Cluster Wireless Sensor Networks in WIRED/WIRELESS INTERNET COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11277-019-06146-y

    DOI

    http://dx.doi.org/10.1007/s11277-019-06146-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112085878


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Visvesvaraya Technological University", 
              "id": "https://www.grid.ac/institutes/grid.444321.4", 
              "name": [
                "Department of Electronics and Communication Engineering, RRCE Research Centre, Bengaluru, Karnataka, India", 
                "VTU, Belagavi, Karnataka, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jyothi", 
            "givenName": "A. P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Computer Science and Engineering, RRCE, Bengaluru, Karnataka, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Usha", 
            "givenName": "S.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.procs.2015.03.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003248595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-3363-7_70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008989735", 
              "https://doi.org/10.1007/978-1-4614-3363-7_70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009905742", 
              "https://doi.org/10.1186/1471-2105-8-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-015-0354-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010622525", 
              "https://doi.org/10.1186/s13638-015-0354-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-015-0354-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010622525", 
              "https://doi.org/10.1186/s13638-015-0354-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13965-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017196442", 
              "https://doi.org/10.1007/978-3-642-13965-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13965-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017196442", 
              "https://doi.org/10.1007/978-3-642-13965-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11276-015-1061-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633828", 
              "https://doi.org/10.1007/s11276-015-1061-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-81-322-2268-2_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021076880", 
              "https://doi.org/10.1007/978-81-322-2268-2_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24584-3_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024906139", 
              "https://doi.org/10.1007/978-3-319-24584-3_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proeng.2012.06.444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028841787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11768-011-0232-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030187162", 
              "https://doi.org/10.1007/s11768-011-0232-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-81-322-1665-0_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031158920", 
              "https://doi.org/10.1007/978-81-322-1665-0_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-27299-8_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033607327", 
              "https://doi.org/10.1007/978-3-642-27299-8_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2010.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036114074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-41674-3_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046350119", 
              "https://doi.org/10.1007/978-3-642-41674-3_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21560-5_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047119201", 
              "https://doi.org/10.1007/978-3-642-21560-5_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21560-5_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047119201", 
              "https://doi.org/10.1007/978-3-642-21560-5_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsen.2015.2445796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061324073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2010.2054080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2008.926073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061819835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2011.092011.110717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061827875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/19521-1150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072601232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14225-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089719911", 
              "https://doi.org/10.1007/978-3-319-14225-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccct2.2017.7972237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093986239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icoac.2013.6921949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095463629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109727650", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Energy efficient clustering has always been the center of attention among the research community pertaining to wireless sensor network (WSN). Till last decade, there have been significant studies towards clustering technique as well as energy efficiency, but no robust solution has yet been evolved. Therefore, this manuscript introduces a unique optimization scheme for the purpose of enhancing the clustering techniques. The technique is called as MSoC or multi-scale optimized clustering, where a novel clustering technique is shown with an aid of single and multi-level clustering approximation method. The technique also introduces a concept of RF Transceiver that can solve the energy problems in data aggregation for large scale WSN. The result acquired from the study exhibits to better performance with respect to energy conservation on higher number of simulation rounds till date in comparison to existing techniques.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11277-019-06146-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052655", 
            "issn": [
              "0929-6212", 
              "1572-834X"
            ], 
            "name": "Wireless Personal Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "105"
          }
        ], 
        "name": "MSoC: Multi-scale Optimized Clustering for Energy Preservation in Wireless Sensor Network", 
        "pagination": "1309-1328", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "088af541b36b831a13dd1f66c5733f512701bac60c6d6b7d76e5f69db55d93cb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11277-019-06146-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112085878"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11277-019-06146-y", 
          "https://app.dimensions.ai/details/publication/pub.1112085878"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72867_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11277-019-06146-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06146-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06146-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06146-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06146-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11277-019-06146-y schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N0ec213572c1442899355a8baf4608f76
    4 schema:citation sg:pub.10.1007/978-1-4614-3363-7_70
    5 sg:pub.10.1007/978-3-319-14225-8_3
    6 sg:pub.10.1007/978-3-319-24584-3_53
    7 sg:pub.10.1007/978-3-642-13965-9_1
    8 sg:pub.10.1007/978-3-642-21560-5_20
    9 sg:pub.10.1007/978-3-642-27299-8_43
    10 sg:pub.10.1007/978-3-642-41674-3_29
    11 sg:pub.10.1007/978-81-322-1665-0_13
    12 sg:pub.10.1007/978-81-322-2268-2_13
    13 sg:pub.10.1007/s11276-015-1061-6
    14 sg:pub.10.1007/s11768-011-0232-y
    15 sg:pub.10.1186/1471-2105-8-3
    16 sg:pub.10.1186/s13638-015-0354-x
    17 https://app.dimensions.ai/details/publication/pub.1109727650
    18 https://doi.org/10.1016/j.ins.2010.07.005
    19 https://doi.org/10.1016/j.procs.2015.03.133
    20 https://doi.org/10.1016/j.proeng.2012.06.444
    21 https://doi.org/10.1109/iccct2.2017.7972237
    22 https://doi.org/10.1109/icoac.2013.6921949
    23 https://doi.org/10.1109/jsen.2015.2445796
    24 https://doi.org/10.1109/tsmcc.2010.2054080
    25 https://doi.org/10.1109/tvt.2008.926073
    26 https://doi.org/10.1109/twc.2011.092011.110717
    27 https://doi.org/10.5120/19521-1150
    28 schema:datePublished 2019-04
    29 schema:datePublishedReg 2019-04-01
    30 schema:description Energy efficient clustering has always been the center of attention among the research community pertaining to wireless sensor network (WSN). Till last decade, there have been significant studies towards clustering technique as well as energy efficiency, but no robust solution has yet been evolved. Therefore, this manuscript introduces a unique optimization scheme for the purpose of enhancing the clustering techniques. The technique is called as MSoC or multi-scale optimized clustering, where a novel clustering technique is shown with an aid of single and multi-level clustering approximation method. The technique also introduces a concept of RF Transceiver that can solve the energy problems in data aggregation for large scale WSN. The result acquired from the study exhibits to better performance with respect to energy conservation on higher number of simulation rounds till date in comparison to existing techniques.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N17a4a4a170b1497aa9af28ca4457230e
    35 Na88a2229bc32474e98dd33a35d4f0923
    36 sg:journal.1052655
    37 schema:name MSoC: Multi-scale Optimized Clustering for Energy Preservation in Wireless Sensor Network
    38 schema:pagination 1309-1328
    39 schema:productId N50504e7781af490f9400761e6a4a8c12
    40 Nb90b0dc1448a4d47a3fbf698e14a9ec3
    41 Nc7a74c81b8de41b4a7d66715ea8be5b1
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112085878
    43 https://doi.org/10.1007/s11277-019-06146-y
    44 schema:sdDatePublished 2019-04-11T12:55
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Na4f36082f40f4293a4e23c1ab117bbb5
    47 schema:url https://link.springer.com/10.1007%2Fs11277-019-06146-y
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N0ec213572c1442899355a8baf4608f76 rdf:first N8350266aa82644048d265d57ab8d0dda
    52 rdf:rest N2e6558ebaf49461bbcb97dfc063fd299
    53 N17a4a4a170b1497aa9af28ca4457230e schema:issueNumber 4
    54 rdf:type schema:PublicationIssue
    55 N2e6558ebaf49461bbcb97dfc063fd299 rdf:first N9fcbf5aa31904495b4ca77222717d1ed
    56 rdf:rest rdf:nil
    57 N50504e7781af490f9400761e6a4a8c12 schema:name dimensions_id
    58 schema:value pub.1112085878
    59 rdf:type schema:PropertyValue
    60 N8350266aa82644048d265d57ab8d0dda schema:affiliation https://www.grid.ac/institutes/grid.444321.4
    61 schema:familyName Jyothi
    62 schema:givenName A. P.
    63 rdf:type schema:Person
    64 N9fcbf5aa31904495b4ca77222717d1ed schema:affiliation Naf6989432ae942b886714746662ea237
    65 schema:familyName Usha
    66 schema:givenName S.
    67 rdf:type schema:Person
    68 Na4f36082f40f4293a4e23c1ab117bbb5 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Na88a2229bc32474e98dd33a35d4f0923 schema:volumeNumber 105
    71 rdf:type schema:PublicationVolume
    72 Naf6989432ae942b886714746662ea237 schema:name Department of Computer Science and Engineering, RRCE, Bengaluru, Karnataka, India
    73 rdf:type schema:Organization
    74 Nb90b0dc1448a4d47a3fbf698e14a9ec3 schema:name doi
    75 schema:value 10.1007/s11277-019-06146-y
    76 rdf:type schema:PropertyValue
    77 Nc7a74c81b8de41b4a7d66715ea8be5b1 schema:name readcube_id
    78 schema:value 088af541b36b831a13dd1f66c5733f512701bac60c6d6b7d76e5f69db55d93cb
    79 rdf:type schema:PropertyValue
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Applied Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1052655 schema:issn 0929-6212
    87 1572-834X
    88 schema:name Wireless Personal Communications
    89 rdf:type schema:Periodical
    90 sg:pub.10.1007/978-1-4614-3363-7_70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008989735
    91 https://doi.org/10.1007/978-1-4614-3363-7_70
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-3-319-14225-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089719911
    94 https://doi.org/10.1007/978-3-319-14225-8_3
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-319-24584-3_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024906139
    97 https://doi.org/10.1007/978-3-319-24584-3_53
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-642-13965-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017196442
    100 https://doi.org/10.1007/978-3-642-13965-9_1
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/978-3-642-21560-5_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047119201
    103 https://doi.org/10.1007/978-3-642-21560-5_20
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/978-3-642-27299-8_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033607327
    106 https://doi.org/10.1007/978-3-642-27299-8_43
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-642-41674-3_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046350119
    109 https://doi.org/10.1007/978-3-642-41674-3_29
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-81-322-1665-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031158920
    112 https://doi.org/10.1007/978-81-322-1665-0_13
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-81-322-2268-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021076880
    115 https://doi.org/10.1007/978-81-322-2268-2_13
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s11276-015-1061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633828
    118 https://doi.org/10.1007/s11276-015-1061-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s11768-011-0232-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030187162
    121 https://doi.org/10.1007/s11768-011-0232-y
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1186/1471-2105-8-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009905742
    124 https://doi.org/10.1186/1471-2105-8-3
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1186/s13638-015-0354-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010622525
    127 https://doi.org/10.1186/s13638-015-0354-x
    128 rdf:type schema:CreativeWork
    129 https://app.dimensions.ai/details/publication/pub.1109727650 schema:CreativeWork
    130 https://doi.org/10.1016/j.ins.2010.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036114074
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.procs.2015.03.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003248595
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.proeng.2012.06.444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028841787
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/iccct2.2017.7972237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093986239
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/icoac.2013.6921949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095463629
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/jsen.2015.2445796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061324073
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/tsmcc.2010.2054080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798248
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/tvt.2008.926073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061819835
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/twc.2011.092011.110717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061827875
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.5120/19521-1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072601232
    149 rdf:type schema:CreativeWork
    150 https://www.grid.ac/institutes/grid.444321.4 schema:alternateName Visvesvaraya Technological University
    151 schema:name Department of Electronics and Communication Engineering, RRCE Research Centre, Bengaluru, Karnataka, India
    152 VTU, Belagavi, Karnataka, India
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...