AGCM: Active Queue Management-Based Green Cloud Model for Mobile Edge Computing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Alshimaa H. Ismail, Nirmeen A. El-Bahnasawy, Hesham F. A. Hamed

ABSTRACT

Mobile edge computing (MEC) introduced a way for mobile users to acquire the benefits of cloud computing and satisfy the continuous growth of data demands. Still, amidst the evolutionary development of cloud computing and MEC, the wireless bandwidth and mobile devices limitations present numerous obstacles which limit the system efficiency, including the energy consumption and latency, these restrictions must be eliminated to realize the determined low energy and millisecond-scale latency for 5G. In this paper, an “Active queue management-based green cloud model for mobile edge computing” referred to as ‘AGCM’ is proposed for 5G to address this issue, in which the mobile users are served more efficiently with less energy waste at both the cloud and the mobile devices and reduced latency. The proposed model achieves this by alleviating the congestion in the cloud by utilizing the enhanced random early detection algorithm and implementing a virtual list to store the packets information and smartly prioritize and serve the packets. The simulation results, implemented in NS2 Green Cloud Simulator, attested that AGCM compared to the conventional cloud and femtolet model provided enhancement in the energy consumption by 90.6% and 24.6% respectively, the results also shows that AGCM can reduce the latency by 84% and 65% than the conventional cloud and femtolet model respectively. The quality of service also improved as the throughput is increased by 420% and 3.48% compared with cloud and femtolet respectively. More... »

PAGES

765-785

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11277-019-06119-1

DOI

http://dx.doi.org/10.1007/s11277-019-06119-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111675334


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Electronics and Communications Engineering Department, Delta Higher Institute for Engineering and Technology, 35111, Talkha, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ismail", 
        "givenName": "Alshimaa H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Menoufia University", 
          "id": "https://www.grid.ac/institutes/grid.411775.1", 
          "name": [
            "Computer Science and Engineering Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Bahnasawy", 
        "givenName": "Nirmeen A.", 
        "id": "sg:person.014736100505.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736100505.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Minia University", 
          "id": "https://www.grid.ac/institutes/grid.411806.a", 
          "name": [
            "Electrical Engineering Department, Faculty of Engineering, Minia University, 61111, El-Minia, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamed", 
        "givenName": "Hesham F. A.", 
        "id": "sg:person.010536012130.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010536012130.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2973750.2985265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008042780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1631/jzus.c1400013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010683522", 
          "https://doi.org/10.1631/jzus.c1400013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnca.2015.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025385399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.simpat.2016.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027995869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2307636.2307658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028305600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2333660.2333724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029083298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2016.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038320353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2012.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040849845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2757384.2757397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049908195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jiot.2016.2584538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061280876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsac.2014.2328098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061318517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2007.443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061387917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2017.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061389404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mprv.2009.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061418545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mwc.2014.6812298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061432630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/surv.2012.102512.00019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcc.2016.2594175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061542062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcc.2016.2594175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061542062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcc.2016.2594175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061542062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcc.2016.2594175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061542062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcc.2016.2594175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061542062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/16039-5015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072598298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mnet.2017.1500293nm", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083643348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/5121302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084845252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcomm.2017.2699660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085304081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comst.2017.2745201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091358001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3837/tiis.2017.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092148410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/giots.2017.8016213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094369423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cloud.2015.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094462525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/milcom.2014.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094541498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/eucnc.2017.7980678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094767462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/icst.mobicase.2014.257757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095077829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mobilecloud.2016.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095279547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2011.5934885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095433435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ict.2016.7500486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095583949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Mobile edge computing (MEC) introduced a way for mobile users to acquire the benefits of cloud computing and satisfy the continuous growth of data demands. Still, amidst the evolutionary development of cloud computing and MEC, the wireless bandwidth and mobile devices limitations present numerous obstacles which limit the system efficiency, including the energy consumption and latency, these restrictions must be eliminated to realize the determined low energy and millisecond-scale latency for 5G. In this paper, an \u201cActive queue management-based green cloud model for mobile edge computing\u201d referred to as \u2018AGCM\u2019 is proposed for 5G to address this issue, in which the mobile users are served more efficiently with less energy waste at both the cloud and the mobile devices and reduced latency. The proposed model achieves this by alleviating the congestion in the cloud by utilizing the enhanced random early detection algorithm and implementing a virtual list to store the packets information and smartly prioritize and serve the packets. The simulation results, implemented in NS2 Green Cloud Simulator, attested that AGCM compared to the conventional cloud and femtolet model provided enhancement in the energy consumption by 90.6% and 24.6% respectively, the results also shows that AGCM can reduce the latency by 84% and 65% than the conventional cloud and femtolet model respectively. The quality of service also improved as the throughput is increased by 420% and 3.48% compared with cloud and femtolet respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11277-019-06119-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052655", 
        "issn": [
          "0929-6212", 
          "1572-834X"
        ], 
        "name": "Wireless Personal Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "105"
      }
    ], 
    "name": "AGCM: Active Queue Management-Based Green Cloud Model for Mobile Edge Computing", 
    "pagination": "765-785", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b236304e066035a97266b37054afa6fde4f2a2c2d6952781d659a9c8304e4ddf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11277-019-06119-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111675334"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11277-019-06119-1", 
      "https://app.dimensions.ai/details/publication/pub.1111675334"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72850_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11277-019-06119-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06119-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06119-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06119-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-019-06119-1'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11277-019-06119-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6f67e957e1864b37959fbf5687ca16ce
4 schema:citation sg:pub.10.1631/jzus.c1400013
5 https://doi.org/10.1016/j.comnet.2012.09.007
6 https://doi.org/10.1016/j.future.2016.06.024
7 https://doi.org/10.1016/j.jnca.2015.05.016
8 https://doi.org/10.1016/j.simpat.2016.01.014
9 https://doi.org/10.1109/cloud.2015.12
10 https://doi.org/10.1109/comst.2017.2745201
11 https://doi.org/10.1109/eucnc.2017.7980678
12 https://doi.org/10.1109/giots.2017.8016213
13 https://doi.org/10.1109/ict.2016.7500486
14 https://doi.org/10.1109/infcom.2011.5934885
15 https://doi.org/10.1109/jiot.2016.2584538
16 https://doi.org/10.1109/jsac.2014.2328098
17 https://doi.org/10.1109/mc.2007.443
18 https://doi.org/10.1109/mc.2017.9
19 https://doi.org/10.1109/milcom.2014.145
20 https://doi.org/10.1109/mnet.2017.1500293nm
21 https://doi.org/10.1109/mobilecloud.2016.16
22 https://doi.org/10.1109/mprv.2009.64
23 https://doi.org/10.1109/mwc.2014.6812298
24 https://doi.org/10.1109/surv.2012.102512.00019
25 https://doi.org/10.1109/tcc.2016.2594175
26 https://doi.org/10.1109/tcomm.2017.2699660
27 https://doi.org/10.1145/2307636.2307658
28 https://doi.org/10.1145/2333660.2333724
29 https://doi.org/10.1145/2757384.2757397
30 https://doi.org/10.1145/2973750.2985265
31 https://doi.org/10.1155/2017/5121302
32 https://doi.org/10.3837/tiis.2017.09.008
33 https://doi.org/10.4108/icst.mobicase.2014.257757
34 https://doi.org/10.5120/16039-5015
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description Mobile edge computing (MEC) introduced a way for mobile users to acquire the benefits of cloud computing and satisfy the continuous growth of data demands. Still, amidst the evolutionary development of cloud computing and MEC, the wireless bandwidth and mobile devices limitations present numerous obstacles which limit the system efficiency, including the energy consumption and latency, these restrictions must be eliminated to realize the determined low energy and millisecond-scale latency for 5G. In this paper, an “Active queue management-based green cloud model for mobile edge computing” referred to as ‘AGCM’ is proposed for 5G to address this issue, in which the mobile users are served more efficiently with less energy waste at both the cloud and the mobile devices and reduced latency. The proposed model achieves this by alleviating the congestion in the cloud by utilizing the enhanced random early detection algorithm and implementing a virtual list to store the packets information and smartly prioritize and serve the packets. The simulation results, implemented in NS2 Green Cloud Simulator, attested that AGCM compared to the conventional cloud and femtolet model provided enhancement in the energy consumption by 90.6% and 24.6% respectively, the results also shows that AGCM can reduce the latency by 84% and 65% than the conventional cloud and femtolet model respectively. The quality of service also improved as the throughput is increased by 420% and 3.48% compared with cloud and femtolet respectively.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N2e8ea008cbdf44ada2e9bf666a368a74
42 N80cf3704b9f54fcd89ed431a985f59d4
43 sg:journal.1052655
44 schema:name AGCM: Active Queue Management-Based Green Cloud Model for Mobile Edge Computing
45 schema:pagination 765-785
46 schema:productId N65ed6926b7784402890e1570831f4718
47 N94726e702241425cb68cb542dd72161e
48 Ne1e57be4cc3b46d394999eafd101cafa
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111675334
50 https://doi.org/10.1007/s11277-019-06119-1
51 schema:sdDatePublished 2019-04-11T12:53
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Naa90c0761331444f953be8140d53eef2
54 schema:url https://link.springer.com/10.1007%2Fs11277-019-06119-1
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N011e9e8f9a3e4e2d883bbda3be7d0f82 schema:affiliation Nd36488452f4e458eb7af7e28b2b3331a
59 schema:familyName Ismail
60 schema:givenName Alshimaa H.
61 rdf:type schema:Person
62 N2e8ea008cbdf44ada2e9bf666a368a74 schema:issueNumber 3
63 rdf:type schema:PublicationIssue
64 N488503b87c9e42f3b0f99f1dcb953df4 rdf:first sg:person.010536012130.37
65 rdf:rest rdf:nil
66 N4eca4706ded24693be49ae18a9d80c37 rdf:first sg:person.014736100505.72
67 rdf:rest N488503b87c9e42f3b0f99f1dcb953df4
68 N65ed6926b7784402890e1570831f4718 schema:name dimensions_id
69 schema:value pub.1111675334
70 rdf:type schema:PropertyValue
71 N6f67e957e1864b37959fbf5687ca16ce rdf:first N011e9e8f9a3e4e2d883bbda3be7d0f82
72 rdf:rest N4eca4706ded24693be49ae18a9d80c37
73 N80cf3704b9f54fcd89ed431a985f59d4 schema:volumeNumber 105
74 rdf:type schema:PublicationVolume
75 N94726e702241425cb68cb542dd72161e schema:name doi
76 schema:value 10.1007/s11277-019-06119-1
77 rdf:type schema:PropertyValue
78 Naa90c0761331444f953be8140d53eef2 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nd36488452f4e458eb7af7e28b2b3331a schema:name Electronics and Communications Engineering Department, Delta Higher Institute for Engineering and Technology, 35111, Talkha, Egypt
81 rdf:type schema:Organization
82 Ne1e57be4cc3b46d394999eafd101cafa schema:name readcube_id
83 schema:value b236304e066035a97266b37054afa6fde4f2a2c2d6952781d659a9c8304e4ddf
84 rdf:type schema:PropertyValue
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:journal.1052655 schema:issn 0929-6212
92 1572-834X
93 schema:name Wireless Personal Communications
94 rdf:type schema:Periodical
95 sg:person.010536012130.37 schema:affiliation https://www.grid.ac/institutes/grid.411806.a
96 schema:familyName Hamed
97 schema:givenName Hesham F. A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010536012130.37
99 rdf:type schema:Person
100 sg:person.014736100505.72 schema:affiliation https://www.grid.ac/institutes/grid.411775.1
101 schema:familyName El-Bahnasawy
102 schema:givenName Nirmeen A.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736100505.72
104 rdf:type schema:Person
105 sg:pub.10.1631/jzus.c1400013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010683522
106 https://doi.org/10.1631/jzus.c1400013
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.comnet.2012.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040849845
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.future.2016.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038320353
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jnca.2015.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025385399
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.simpat.2016.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027995869
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/cloud.2015.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094462525
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/comst.2017.2745201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091358001
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/eucnc.2017.7980678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094767462
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/giots.2017.8016213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094369423
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/ict.2016.7500486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095583949
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/infcom.2011.5934885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095433435
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/jiot.2016.2584538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061280876
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/jsac.2014.2328098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061318517
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/mc.2007.443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061387917
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/mc.2017.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061389404
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/milcom.2014.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094541498
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/mnet.2017.1500293nm schema:sameAs https://app.dimensions.ai/details/publication/pub.1083643348
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/mobilecloud.2016.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095279547
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/mprv.2009.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061418545
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/mwc.2014.6812298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061432630
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/surv.2012.102512.00019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446818
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tcc.2016.2594175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061542062
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tcomm.2017.2699660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085304081
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/2307636.2307658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028305600
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/2333660.2333724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029083298
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/2757384.2757397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049908195
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1145/2973750.2985265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008042780
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1155/2017/5121302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084845252
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3837/tiis.2017.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092148410
163 rdf:type schema:CreativeWork
164 https://doi.org/10.4108/icst.mobicase.2014.257757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095077829
165 rdf:type schema:CreativeWork
166 https://doi.org/10.5120/16039-5015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072598298
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.411775.1 schema:alternateName Menoufia University
169 schema:name Computer Science and Engineering Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.411806.a schema:alternateName Minia University
172 schema:name Electrical Engineering Department, Faculty of Engineering, Minia University, 61111, El-Minia, Egypt
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...