Closed Form Expressions for the Quantile Function of the Erlang Distribution Used in Engineering Models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Hilary I. Okagbue, Muminu O. Adamu, Timothy A. Anake

ABSTRACT

Quantile function is heavily utilized in modeling, simulation, reliability analysis and random number generation. The use is often limited if the inversion method fails to estimate it from the cumulative distribution function (CDF). As a result, approximation becomes the other option. The failure of the inversion method is often due to the intractable nature of the CDF of the distribution. Erlang distribution belongs to those classes of distributions. The distribution is a particular case of the gamma distribution. Little is known about the quantile approximation of the Erlang distribution. This is due to the fact that researchers prefer to work with the gamma distribution of which the Erlang is a particular case. This work applied the quantile mechanics approach, power series method and cubic spline interpolation to obtain the approximate of the quantile function of the Erlang distribution for degrees of freedom from one to two. The approximate values compares favorably with the exact ones. Consequently, the result in this paper improved the existing results on the extreme tails of the distribution. The closed form expression for the quantile function obtained here is very useful in modeling physical and engineering systems that are completely described by or fitted with the Erlang distribution. More... »

PAGES

1393-1408

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11277-018-6090-x

DOI

http://dx.doi.org/10.1007/s11277-018-6090-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110448866


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Covenant University", 
          "id": "https://www.grid.ac/institutes/grid.411932.c", 
          "name": [
            "Department of Mathematics, Covenant University, Ota, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okagbue", 
        "givenName": "Hilary I.", 
        "id": "sg:person.016470673567.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470673567.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lagos", 
          "id": "https://www.grid.ac/institutes/grid.411782.9", 
          "name": [
            "Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adamu", 
        "givenName": "Muminu O.", 
        "id": "sg:person.012651267517.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651267517.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Covenant University", 
          "id": "https://www.grid.ac/institutes/grid.411932.c", 
          "name": [
            "Department of Mathematics, Covenant University, Ota, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anake", 
        "givenName": "Timothy A.", 
        "id": "sg:person.016104650751.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104650751.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cie.2016.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002310697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matcom.2008.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13518470802697402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009604224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.06.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009632605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207549608905064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019726069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02630259608970184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023808299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-002-1465-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040151166", 
          "https://doi.org/10.1007/s00607-002-1465-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792512000137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053867771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792508007341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053926116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792513000417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054030803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20082045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056798463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-com.2010.0697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056820462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-com.2012.0463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056820989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-map.2013.0619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056831375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-947x(2001)127:4(289)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057603614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1960.10489895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058283331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tase.2010.2071865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061515034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0908029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177698251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064399240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/13926292.2012.664571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071466195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3846/16484142.2011.641183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071467204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-017-2515-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084739478", 
          "https://doi.org/10.1007/s13369-017-2515-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-017-2515-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084739478", 
          "https://doi.org/10.1007/s13369-017-2515-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-017-2864-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092516187", 
          "https://doi.org/10.1007/s13369-017-2864-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ares.2014.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093223859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iraniancee.2012.6292599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094036554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mape.2013.6689941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095579893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/9780784413159.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097232008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/eai.14-12-2015.2262703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099431804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/eai.14-12-2015.2262703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099431804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1400905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102743623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21833/ijaas.2018.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106496929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Quantile function is heavily utilized in modeling, simulation, reliability analysis and random number generation. The use is often limited if the inversion method fails to estimate it from the cumulative distribution function (CDF). As a result, approximation becomes the other option. The failure of the inversion method is often due to the intractable nature of the CDF of the distribution. Erlang distribution belongs to those classes of distributions. The distribution is a particular case of the gamma distribution. Little is known about the quantile approximation of the Erlang distribution. This is due to the fact that researchers prefer to work with the gamma distribution of which the Erlang is a particular case. This work applied the quantile mechanics approach, power series method and cubic spline interpolation to obtain the approximate of the quantile function of the Erlang distribution for degrees of freedom from one to two. The approximate values compares favorably with the exact ones. Consequently, the result in this paper improved the existing results on the extreme tails of the distribution. The closed form expression for the quantile function obtained here is very useful in modeling physical and engineering systems that are completely described by or fitted with the Erlang distribution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11277-018-6090-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052655", 
        "issn": [
          "0929-6212", 
          "1572-834X"
        ], 
        "name": "Wireless Personal Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "name": "Closed Form Expressions for the Quantile Function of the Erlang Distribution Used in Engineering Models", 
    "pagination": "1393-1408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ad5de8dddb6fa9e2b80360ba10e218c3dbc857ac4caf0ba2ff411baba83fba2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11277-018-6090-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110448866"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11277-018-6090-x", 
      "https://app.dimensions.ai/details/publication/pub.1110448866"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47967_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11277-018-6090-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-018-6090-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-018-6090-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-018-6090-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-018-6090-x'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11277-018-6090-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5d31ac526a904f80b8dada5abb0fed07
4 schema:citation sg:pub.10.1007/s00607-002-1465-x
5 sg:pub.10.1007/s13369-017-2515-1
6 sg:pub.10.1007/s13369-017-2864-9
7 https://doi.org/10.1016/j.amc.2014.06.113
8 https://doi.org/10.1016/j.cie.2016.11.017
9 https://doi.org/10.1016/j.matcom.2008.07.010
10 https://doi.org/10.1017/s0956792508007341
11 https://doi.org/10.1017/s0956792512000137
12 https://doi.org/10.1017/s0956792513000417
13 https://doi.org/10.1049/el:20082045
14 https://doi.org/10.1049/iet-com.2010.0697
15 https://doi.org/10.1049/iet-com.2012.0463
16 https://doi.org/10.1049/iet-map.2013.0619
17 https://doi.org/10.1061/(asce)0733-947x(2001)127:4(289)
18 https://doi.org/10.1061/9780784413159.090
19 https://doi.org/10.1080/00207549608905064
20 https://doi.org/10.1080/00401706.1960.10489895
21 https://doi.org/10.1080/02630259608970184
22 https://doi.org/10.1080/13518470802697402
23 https://doi.org/10.1109/ares.2014.65
24 https://doi.org/10.1109/iraniancee.2012.6292599
25 https://doi.org/10.1109/mape.2013.6689941
26 https://doi.org/10.1109/tase.2010.2071865
27 https://doi.org/10.1137/0908029
28 https://doi.org/10.1214/aoms/1177698251
29 https://doi.org/10.21833/ijaas.2018.10.007
30 https://doi.org/10.2307/1400905
31 https://doi.org/10.3846/13926292.2012.664571
32 https://doi.org/10.3846/16484142.2011.641183
33 https://doi.org/10.4108/eai.14-12-2015.2262703
34 schema:datePublished 2019-02
35 schema:datePublishedReg 2019-02-01
36 schema:description Quantile function is heavily utilized in modeling, simulation, reliability analysis and random number generation. The use is often limited if the inversion method fails to estimate it from the cumulative distribution function (CDF). As a result, approximation becomes the other option. The failure of the inversion method is often due to the intractable nature of the CDF of the distribution. Erlang distribution belongs to those classes of distributions. The distribution is a particular case of the gamma distribution. Little is known about the quantile approximation of the Erlang distribution. This is due to the fact that researchers prefer to work with the gamma distribution of which the Erlang is a particular case. This work applied the quantile mechanics approach, power series method and cubic spline interpolation to obtain the approximate of the quantile function of the Erlang distribution for degrees of freedom from one to two. The approximate values compares favorably with the exact ones. Consequently, the result in this paper improved the existing results on the extreme tails of the distribution. The closed form expression for the quantile function obtained here is very useful in modeling physical and engineering systems that are completely described by or fitted with the Erlang distribution.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N9c555d46f2b343c5aa59dc9cfc9bd202
41 Nd7aad293aab744f5a481eeae408f1fb4
42 sg:journal.1052655
43 schema:name Closed Form Expressions for the Quantile Function of the Erlang Distribution Used in Engineering Models
44 schema:pagination 1393-1408
45 schema:productId N3fb3d6ce1d874e91b7ec64411a8ee5a2
46 N4059527148954b49bc9dc9876a211e15
47 Nc4e9d71c7b284f10a868883d82905ff1
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110448866
49 https://doi.org/10.1007/s11277-018-6090-x
50 schema:sdDatePublished 2019-04-11T09:10
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Ne2ae10b4d6e64c7597a15d3e2dc4782c
53 schema:url https://link.springer.com/10.1007%2Fs11277-018-6090-x
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N2651b754bb8644099b3d804a032b86ce rdf:first sg:person.012651267517.34
58 rdf:rest N3a275ec8cfc44f9f8e045862040d3ec7
59 N3a275ec8cfc44f9f8e045862040d3ec7 rdf:first sg:person.016104650751.15
60 rdf:rest rdf:nil
61 N3fb3d6ce1d874e91b7ec64411a8ee5a2 schema:name readcube_id
62 schema:value 3ad5de8dddb6fa9e2b80360ba10e218c3dbc857ac4caf0ba2ff411baba83fba2
63 rdf:type schema:PropertyValue
64 N4059527148954b49bc9dc9876a211e15 schema:name dimensions_id
65 schema:value pub.1110448866
66 rdf:type schema:PropertyValue
67 N5d31ac526a904f80b8dada5abb0fed07 rdf:first sg:person.016470673567.87
68 rdf:rest N2651b754bb8644099b3d804a032b86ce
69 N9c555d46f2b343c5aa59dc9cfc9bd202 schema:issueNumber 4
70 rdf:type schema:PublicationIssue
71 Nc4e9d71c7b284f10a868883d82905ff1 schema:name doi
72 schema:value 10.1007/s11277-018-6090-x
73 rdf:type schema:PropertyValue
74 Nd7aad293aab744f5a481eeae408f1fb4 schema:volumeNumber 104
75 rdf:type schema:PublicationVolume
76 Ne2ae10b4d6e64c7597a15d3e2dc4782c schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
82 schema:name Statistics
83 rdf:type schema:DefinedTerm
84 sg:journal.1052655 schema:issn 0929-6212
85 1572-834X
86 schema:name Wireless Personal Communications
87 rdf:type schema:Periodical
88 sg:person.012651267517.34 schema:affiliation https://www.grid.ac/institutes/grid.411782.9
89 schema:familyName Adamu
90 schema:givenName Muminu O.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651267517.34
92 rdf:type schema:Person
93 sg:person.016104650751.15 schema:affiliation https://www.grid.ac/institutes/grid.411932.c
94 schema:familyName Anake
95 schema:givenName Timothy A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104650751.15
97 rdf:type schema:Person
98 sg:person.016470673567.87 schema:affiliation https://www.grid.ac/institutes/grid.411932.c
99 schema:familyName Okagbue
100 schema:givenName Hilary I.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016470673567.87
102 rdf:type schema:Person
103 sg:pub.10.1007/s00607-002-1465-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040151166
104 https://doi.org/10.1007/s00607-002-1465-x
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s13369-017-2515-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084739478
107 https://doi.org/10.1007/s13369-017-2515-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s13369-017-2864-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092516187
110 https://doi.org/10.1007/s13369-017-2864-9
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.amc.2014.06.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009632605
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.cie.2016.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002310697
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.matcom.2008.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851342
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/s0956792508007341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053926116
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1017/s0956792512000137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053867771
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/s0956792513000417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054030803
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1049/el:20082045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056798463
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1049/iet-com.2010.0697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056820462
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1049/iet-com.2012.0463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056820989
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1049/iet-map.2013.0619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056831375
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1061/(asce)0733-947x(2001)127:4(289) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057603614
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1061/9780784413159.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097232008
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/00207549608905064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019726069
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/00401706.1960.10489895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058283331
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/02630259608970184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023808299
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/13518470802697402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009604224
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/ares.2014.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093223859
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/iraniancee.2012.6292599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094036554
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/mape.2013.6689941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095579893
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tase.2010.2071865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061515034
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/0908029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857076
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/aoms/1177698251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064399240
155 rdf:type schema:CreativeWork
156 https://doi.org/10.21833/ijaas.2018.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106496929
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2307/1400905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102743623
159 rdf:type schema:CreativeWork
160 https://doi.org/10.3846/13926292.2012.664571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071466195
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3846/16484142.2011.641183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071467204
163 rdf:type schema:CreativeWork
164 https://doi.org/10.4108/eai.14-12-2015.2262703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099431804
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.411782.9 schema:alternateName University of Lagos
167 schema:name Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.411932.c schema:alternateName Covenant University
170 schema:name Department of Mathematics, Covenant University, Ota, Nigeria
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...