Machine Learning Based Big Data Processing Framework for Cancer Diagnosis Using Hidden Markov Model and GM Clustering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Gunasekaran Manogaran, V. Vijayakumar, R. Varatharajan, Priyan Malarvizhi Kumar, Revathi Sundarasekar, Ching-Hsien Hsu

ABSTRACT

The change in the DNA is a form of genetic variation in the human genome. In addition, the DNA copy number change is also linked with the progression of many emerging diseases. Array-based Comparative Genomic Hybridization (CGH) is considered as a major task when measuring the DNA copy number change across the genome. Moreover, DNA copy number change is an essential measure to diagnose the cancer disease. Next generation sequencing is an important method for studying the spread of infectious disease qualitatively and quantitatively. CGH is widely used in continuous monitoring of copy number of thousands of genes throughout the genome. In recent years, the size of the DNA sequence data is very large. Hence, there is a need to use a scalable machine learning approach to overcome the various issues in DNA copy number change detection. In this paper, we use a Bayesian hidden Markov model (HMM) with Gaussian Mixture (GM) Clustering approach to model the DNA copy number change across the genome. The proposed Bayesian HMM with GM Clustering approach is compared with various existing approaches such as Pruned Exact Linear Time method, binary segmentation method and segment neighborhood method. Experimental results demonstrate the effectiveness of our proposed change detection algorithm. More... »

PAGES

2099-2116

References to SciGraph publications

  • 2013-10. Development: Big data for a sustainable future in NATURE
  • 2015. Assessment of Vaccination Strategies Using Fuzzy Multi-criteria Decision Making in PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON FUZZY AND NEURO COMPUTING (FANCCO - 2015)
  • 2008-09. Big data: The future of biocuration in NATURE
  • 2009. Parallel K-Means Clustering Based on MapReduce in CLOUD COMPUTING
  • 1989-01. Stochastic models for heterogeneous DNA sequences in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2013. Parallel Two-Phase K-Means in COMPUTATIONAL SCIENCE AND ITS APPLICATIONS – ICCSA 2013
  • 1989-01. Algorithms for the optimal identification of segment neighborhoods in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2017-01. Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images in JOURNAL OF MEDICAL SYSTEMS
  • 2006-12. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources in BMC BIOINFORMATICS
  • 2010-10-28. The patterns and dynamics of genomic instability in metastatic pancreatic cancer in NATURE
  • 2017. Big Data Knowledge System in Healthcare in INTERNET OF THINGS AND BIG DATA TECHNOLOGIES FOR NEXT GENERATION HEALTHCARE
  • 2017-06-22. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm in CLUSTER COMPUTING
  • 2013. The Design of Water Resources and Hydropower Cloud GIS Platform Based on Big Data in GEO-INFORMATICS IN RESOURCE MANAGEMENT AND SUSTAINABLE ECOSYSTEM
  • 2017-06-22. A Gaussian process based big data processing framework in cluster computing environment in CLUSTER COMPUTING
  • 2017. Big Data Analytics in Healthcare Internet of Things in INNOVATIVE HEALTHCARE SYSTEMS FOR THE 21ST CENTURY
  • 2017. Hidden Markov Models for Protein Domain Homology Identification and Analysis in SH2 DOMAINS
  • 2018-07. Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis in MULTIMEDIA TOOLS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11277-017-5044-z

    DOI

    http://dx.doi.org/10.1007/s11277-017-5044-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092656696


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Vellore Institute of Technology University", 
              "id": "https://www.grid.ac/institutes/grid.412813.d", 
              "name": [
                "VIT University, Vellore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manogaran", 
            "givenName": "Gunasekaran", 
            "id": "sg:person.014761767266.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761767266.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vellore Institute of Technology University", 
              "id": "https://www.grid.ac/institutes/grid.412813.d", 
              "name": [
                "School of Computing Science and Engineering, VIT University, Chennai, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vijayakumar", 
            "givenName": "V.", 
            "id": "sg:person.0665731563.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665731563.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Sri Ramanujar Engineering College, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varatharajan", 
            "givenName": "R.", 
            "id": "sg:person.012241702747.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241702747.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vellore Institute of Technology University", 
              "id": "https://www.grid.ac/institutes/grid.412813.d", 
              "name": [
                "VIT University, Vellore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malarvizhi Kumar", 
            "givenName": "Priyan", 
            "id": "sg:person.010735573405.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010735573405.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Priyadarshini Engineering College, Vellore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sundarasekar", 
            "givenName": "Revathi", 
            "id": "sg:person.010754507044.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754507044.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Chung Hua University, Hsinchu, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsu", 
            "givenName": "Ching-Hsien", 
            "id": "sg:person.015205733341.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205733341.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-41908-9_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003657795", 
              "https://doi.org/10.1007/978-3-642-41908-9_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-49736-5_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005055469", 
              "https://doi.org/10.1007/978-3-319-49736-5_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9876.00191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005068213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9876.00191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005068213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10916-016-0662-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005939080", 
              "https://doi.org/10.1007/s10916-016-0662-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10916-016-0662-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005939080", 
              "https://doi.org/10.1007/s10916-016-0662-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02458835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008401468", 
              "https://doi.org/10.1007/bf02458835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02458835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008401468", 
              "https://doi.org/10.1007/bf02458835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg1080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008613513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6861907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016380326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1994.1104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016537913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/455047a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018445264", 
              "https://doi.org/10.1038/455047a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2014.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019668860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/502038d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019821398", 
              "https://doi.org/10.1038/502038d"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-03-3308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021208106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-39640-3_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021429457", 
              "https://doi.org/10.1007/978-3-642-39640-3_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/14.4.317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021888524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022310913", 
              "https://doi.org/10.1038/nature09460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022310913", 
              "https://doi.org/10.1038/nature09460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-6762-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023060542", 
              "https://doi.org/10.1007/978-1-4939-6762-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2016.05.138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024394262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-4149(92)90141-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025324451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1167/iovs.12-9933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025916483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/120103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025981776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijid.2016.02.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026062594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.075671.107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029201520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/640075.640111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029402627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/640075.640111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029402627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.201500037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032691498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.201500037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032691498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02458837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033367959", 
              "https://doi.org/10.1007/bf02458837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02458837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033367959", 
              "https://doi.org/10.1007/bf02458837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-27212-2_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033589937", 
              "https://doi.org/10.1007/978-3-319-27212-2_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2016.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040276470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041353582", 
              "https://doi.org/10.1186/1471-2105-7-62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spl.2016.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044513044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spl.2016.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044513044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spl.2016.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044513044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.automatica.2016.11.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045541478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10665-1_71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047084385", 
              "https://doi.org/10.1007/978-3-642-10665-1_71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10665-1_71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047084385", 
              "https://doi.org/10.1007/978-3-642-10665-1_71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1003904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047141045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mc.22509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051590882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gloenvcha.2015.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052038950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2016.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053189874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.1997.4.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstsp.2008.2011108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061337811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2013.2263145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2013.2276651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2016.2602339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnnls.2016.2616445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061719305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2014.2353639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bjophthalmol-2016-308586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062766474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bjophthalmol-2016-308586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062766474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218001401000836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062949188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2529204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069974892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bigdata.2014.7004422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079122039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00949655.2017.1281927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083438146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/rssc.12213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083718889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/ijaci.2017040106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084448506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compeleceng.2017.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084817017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-55774-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085399555", 
              "https://doi.org/10.1007/978-3-319-55774-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-4768-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085761665", 
              "https://doi.org/10.1007/s11042-017-4768-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-4768-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085761665", 
              "https://doi.org/10.1007/s11042-017-4768-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-017-0982-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086124025", 
              "https://doi.org/10.1007/s10586-017-0982-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-017-0977-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086126886", 
              "https://doi.org/10.1007/s10586-017-0977-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compeleceng.2017.05.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091478191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mnet.2017.1600319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092024820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2006.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094136306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2006.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094136306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpads.2011.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094319382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccis.2011.223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095477175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2017.7951789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095957028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2017.7951789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095957028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/978-1-5225-2947-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096015601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/978-1-5225-2947-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096015601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/978-1-5225-1941-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096035625"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10", 
        "datePublishedReg": "2018-10-01", 
        "description": "The change in the DNA is a form of genetic variation in the human genome. In addition, the DNA copy number change is also linked with the progression of many emerging diseases. Array-based Comparative Genomic Hybridization (CGH) is considered as a major task when measuring the DNA copy number change across the genome. Moreover, DNA copy number change is an essential measure to diagnose the cancer disease. Next generation sequencing is an important method for studying the spread of infectious disease qualitatively and quantitatively. CGH is widely used in continuous monitoring of copy number of thousands of genes throughout the genome. In recent years, the size of the DNA sequence data is very large. Hence, there is a need to use a scalable machine learning approach to overcome the various issues in DNA copy number change detection. In this paper, we use a Bayesian hidden Markov model (HMM) with Gaussian Mixture (GM) Clustering approach to model the DNA copy number change across the genome. The proposed Bayesian HMM with GM Clustering approach is compared with various existing approaches such as Pruned Exact Linear Time method, binary segmentation method and segment neighborhood method. Experimental results demonstrate the effectiveness of our proposed change detection algorithm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11277-017-5044-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052655", 
            "issn": [
              "0929-6212", 
              "1572-834X"
            ], 
            "name": "Wireless Personal Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "name": "Machine Learning Based Big Data Processing Framework for Cancer Diagnosis Using Hidden Markov Model and GM Clustering", 
        "pagination": "2099-2116", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c534843a56483bd75358b43033d2d0d8fb80f58a0670afaf208395621b3b6f56"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11277-017-5044-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092656696"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11277-017-5044-z", 
          "https://app.dimensions.ai/details/publication/pub.1092656696"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000609.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11277-017-5044-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-5044-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-5044-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-5044-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-5044-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    307 TRIPLES      21 PREDICATES      89 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11277-017-5044-z schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Ne09e4083ef824247bf298b491b3275db
    4 schema:citation sg:pub.10.1007/978-1-4939-6762-9_3
    5 sg:pub.10.1007/978-3-319-27212-2_16
    6 sg:pub.10.1007/978-3-319-49736-5_7
    7 sg:pub.10.1007/978-3-319-55774-8_10
    8 sg:pub.10.1007/978-3-642-10665-1_71
    9 sg:pub.10.1007/978-3-642-39640-3_16
    10 sg:pub.10.1007/978-3-642-41908-9_32
    11 sg:pub.10.1007/bf02458835
    12 sg:pub.10.1007/bf02458837
    13 sg:pub.10.1007/s10586-017-0977-2
    14 sg:pub.10.1007/s10586-017-0982-5
    15 sg:pub.10.1007/s10916-016-0662-7
    16 sg:pub.10.1007/s11042-017-4768-9
    17 sg:pub.10.1038/455047a
    18 sg:pub.10.1038/502038d
    19 sg:pub.10.1038/nature09460
    20 sg:pub.10.1186/1471-2105-7-62
    21 https://doi.org/10.1002/bimj.201500037
    22 https://doi.org/10.1002/mc.22509
    23 https://doi.org/10.1006/jmbi.1994.1104
    24 https://doi.org/10.1016/0304-4149(92)90141-c
    25 https://doi.org/10.1016/j.automatica.2016.11.020
    26 https://doi.org/10.1016/j.compeleceng.2017.04.006
    27 https://doi.org/10.1016/j.compeleceng.2017.05.035
    28 https://doi.org/10.1016/j.compmedimag.2016.07.006
    29 https://doi.org/10.1016/j.gloenvcha.2015.02.010
    30 https://doi.org/10.1016/j.ijid.2016.02.084
    31 https://doi.org/10.1016/j.jneumeth.2016.06.014
    32 https://doi.org/10.1016/j.patcog.2014.04.002
    33 https://doi.org/10.1016/j.procs.2016.05.138
    34 https://doi.org/10.1016/j.spl.2016.09.007
    35 https://doi.org/10.1080/00949655.2017.1281927
    36 https://doi.org/10.1089/cmb.1997.4.127
    37 https://doi.org/10.1093/bioinformatics/14.4.317
    38 https://doi.org/10.1093/bioinformatics/btg1080
    39 https://doi.org/10.1101/gr.075671.107
    40 https://doi.org/10.1101/gr.6861907
    41 https://doi.org/10.1109/bigdata.2014.7004422
    42 https://doi.org/10.1109/icassp.2017.7951789
    43 https://doi.org/10.1109/iccis.2011.223
    44 https://doi.org/10.1109/icdm.2006.123
    45 https://doi.org/10.1109/icpads.2011.83
    46 https://doi.org/10.1109/jstsp.2008.2011108
    47 https://doi.org/10.1109/mnet.2017.1600319
    48 https://doi.org/10.1109/tip.2013.2263145
    49 https://doi.org/10.1109/tip.2013.2276651
    50 https://doi.org/10.1109/tmi.2016.2602339
    51 https://doi.org/10.1109/tnnls.2016.2616445
    52 https://doi.org/10.1109/tpami.2014.2353639
    53 https://doi.org/10.1111/1467-9876.00191
    54 https://doi.org/10.1111/rssc.12213
    55 https://doi.org/10.1136/bjophthalmol-2016-308586
    56 https://doi.org/10.1142/s0218001401000836
    57 https://doi.org/10.1145/640075.640111
    58 https://doi.org/10.1158/0008-5472.can-03-3308
    59 https://doi.org/10.1167/iovs.12-9933
    60 https://doi.org/10.1371/journal.pcbi.1003904
    61 https://doi.org/10.1890/120103
    62 https://doi.org/10.2307/2529204
    63 https://doi.org/10.4018/978-1-5225-1941-6
    64 https://doi.org/10.4018/978-1-5225-2947-7
    65 https://doi.org/10.4018/ijaci.2017040106
    66 schema:datePublished 2018-10
    67 schema:datePublishedReg 2018-10-01
    68 schema:description The change in the DNA is a form of genetic variation in the human genome. In addition, the DNA copy number change is also linked with the progression of many emerging diseases. Array-based Comparative Genomic Hybridization (CGH) is considered as a major task when measuring the DNA copy number change across the genome. Moreover, DNA copy number change is an essential measure to diagnose the cancer disease. Next generation sequencing is an important method for studying the spread of infectious disease qualitatively and quantitatively. CGH is widely used in continuous monitoring of copy number of thousands of genes throughout the genome. In recent years, the size of the DNA sequence data is very large. Hence, there is a need to use a scalable machine learning approach to overcome the various issues in DNA copy number change detection. In this paper, we use a Bayesian hidden Markov model (HMM) with Gaussian Mixture (GM) Clustering approach to model the DNA copy number change across the genome. The proposed Bayesian HMM with GM Clustering approach is compared with various existing approaches such as Pruned Exact Linear Time method, binary segmentation method and segment neighborhood method. Experimental results demonstrate the effectiveness of our proposed change detection algorithm.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree false
    72 schema:isPartOf N1594ba69d3b846bba41af120966d1790
    73 N3c5d56d155ec455d8d92b4686efeb3b7
    74 sg:journal.1052655
    75 schema:name Machine Learning Based Big Data Processing Framework for Cancer Diagnosis Using Hidden Markov Model and GM Clustering
    76 schema:pagination 2099-2116
    77 schema:productId Na84fcd2a8b0d44579548694aeae96bfd
    78 Nc34d0417aa064d77a23d943a2da78dde
    79 Nfa4fefd3b9f2413aa7b60f766b9f07da
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092656696
    81 https://doi.org/10.1007/s11277-017-5044-z
    82 schema:sdDatePublished 2019-04-11T00:32
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N67024cb75ca441b99e9d492288bcfdbd
    85 schema:url https://link.springer.com/10.1007%2Fs11277-017-5044-z
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N1594ba69d3b846bba41af120966d1790 schema:volumeNumber 102
    90 rdf:type schema:PublicationVolume
    91 N212559eeda824cb19a19473368ef1bdc rdf:first sg:person.012241702747.37
    92 rdf:rest Nb179a07cb8834a98a64d00db07cbb81d
    93 N3c5d56d155ec455d8d92b4686efeb3b7 schema:issueNumber 3
    94 rdf:type schema:PublicationIssue
    95 N451f3fcc36e8410ab6689dc332632405 rdf:first sg:person.010754507044.01
    96 rdf:rest Nc7951b3934884b8b9ec11796ac9df139
    97 N67024cb75ca441b99e9d492288bcfdbd schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N7d7ed356c5bf4b48ba79fe069d6df37e rdf:first sg:person.0665731563.05
    100 rdf:rest N212559eeda824cb19a19473368ef1bdc
    101 Na2aa44ec2e2843298d276dc0b3a7cb45 schema:name Sri Ramanujar Engineering College, Chennai, India
    102 rdf:type schema:Organization
    103 Na84fcd2a8b0d44579548694aeae96bfd schema:name dimensions_id
    104 schema:value pub.1092656696
    105 rdf:type schema:PropertyValue
    106 Nb179a07cb8834a98a64d00db07cbb81d rdf:first sg:person.010735573405.29
    107 rdf:rest N451f3fcc36e8410ab6689dc332632405
    108 Nc34d0417aa064d77a23d943a2da78dde schema:name doi
    109 schema:value 10.1007/s11277-017-5044-z
    110 rdf:type schema:PropertyValue
    111 Nc3ff302398a2436dbf2c86d94a913289 schema:name Priyadarshini Engineering College, Vellore, India
    112 rdf:type schema:Organization
    113 Nc7951b3934884b8b9ec11796ac9df139 rdf:first sg:person.015205733341.10
    114 rdf:rest rdf:nil
    115 Ne09e4083ef824247bf298b491b3275db rdf:first sg:person.014761767266.18
    116 rdf:rest N7d7ed356c5bf4b48ba79fe069d6df37e
    117 Nfa4fefd3b9f2413aa7b60f766b9f07da schema:name readcube_id
    118 schema:value c534843a56483bd75358b43033d2d0d8fb80f58a0670afaf208395621b3b6f56
    119 rdf:type schema:PropertyValue
    120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Biological Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Genetics
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1052655 schema:issn 0929-6212
    127 1572-834X
    128 schema:name Wireless Personal Communications
    129 rdf:type schema:Periodical
    130 sg:person.010735573405.29 schema:affiliation https://www.grid.ac/institutes/grid.412813.d
    131 schema:familyName Malarvizhi Kumar
    132 schema:givenName Priyan
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010735573405.29
    134 rdf:type schema:Person
    135 sg:person.010754507044.01 schema:affiliation Nc3ff302398a2436dbf2c86d94a913289
    136 schema:familyName Sundarasekar
    137 schema:givenName Revathi
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754507044.01
    139 rdf:type schema:Person
    140 sg:person.012241702747.37 schema:affiliation Na2aa44ec2e2843298d276dc0b3a7cb45
    141 schema:familyName Varatharajan
    142 schema:givenName R.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241702747.37
    144 rdf:type schema:Person
    145 sg:person.014761767266.18 schema:affiliation https://www.grid.ac/institutes/grid.412813.d
    146 schema:familyName Manogaran
    147 schema:givenName Gunasekaran
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761767266.18
    149 rdf:type schema:Person
    150 sg:person.015205733341.10 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    151 schema:familyName Hsu
    152 schema:givenName Ching-Hsien
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205733341.10
    154 rdf:type schema:Person
    155 sg:person.0665731563.05 schema:affiliation https://www.grid.ac/institutes/grid.412813.d
    156 schema:familyName Vijayakumar
    157 schema:givenName V.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665731563.05
    159 rdf:type schema:Person
    160 sg:pub.10.1007/978-1-4939-6762-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023060542
    161 https://doi.org/10.1007/978-1-4939-6762-9_3
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-3-319-27212-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033589937
    164 https://doi.org/10.1007/978-3-319-27212-2_16
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/978-3-319-49736-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005055469
    167 https://doi.org/10.1007/978-3-319-49736-5_7
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-3-319-55774-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085399555
    170 https://doi.org/10.1007/978-3-319-55774-8_10
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-3-642-10665-1_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047084385
    173 https://doi.org/10.1007/978-3-642-10665-1_71
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/978-3-642-39640-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021429457
    176 https://doi.org/10.1007/978-3-642-39640-3_16
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-642-41908-9_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003657795
    179 https://doi.org/10.1007/978-3-642-41908-9_32
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf02458835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008401468
    182 https://doi.org/10.1007/bf02458835
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf02458837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033367959
    185 https://doi.org/10.1007/bf02458837
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10586-017-0977-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086126886
    188 https://doi.org/10.1007/s10586-017-0977-2
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10586-017-0982-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086124025
    191 https://doi.org/10.1007/s10586-017-0982-5
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10916-016-0662-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005939080
    194 https://doi.org/10.1007/s10916-016-0662-7
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11042-017-4768-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085761665
    197 https://doi.org/10.1007/s11042-017-4768-9
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/455047a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018445264
    200 https://doi.org/10.1038/455047a
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/502038d schema:sameAs https://app.dimensions.ai/details/publication/pub.1019821398
    203 https://doi.org/10.1038/502038d
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature09460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022310913
    206 https://doi.org/10.1038/nature09460
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1471-2105-7-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041353582
    209 https://doi.org/10.1186/1471-2105-7-62
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1002/bimj.201500037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032691498
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1002/mc.22509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051590882
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1006/jmbi.1994.1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016537913
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/0304-4149(92)90141-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1025324451
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.automatica.2016.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045541478
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.compeleceng.2017.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084817017
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.compeleceng.2017.05.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091478191
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.compmedimag.2016.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040276470
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.gloenvcha.2015.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052038950
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.ijid.2016.02.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026062594
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.jneumeth.2016.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053189874
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.patcog.2014.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019668860
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.procs.2016.05.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024394262
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.spl.2016.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044513044
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1080/00949655.2017.1281927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083438146
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1089/cmb.1997.4.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245161
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/bioinformatics/14.4.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021888524
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1093/bioinformatics/btg1080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008613513
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1101/gr.075671.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029201520
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1101/gr.6861907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016380326
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1109/bigdata.2014.7004422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079122039
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1109/icassp.2017.7951789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095957028
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1109/iccis.2011.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095477175
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1109/icdm.2006.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094136306
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1109/icpads.2011.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094319382
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1109/jstsp.2008.2011108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337811
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1109/mnet.2017.1600319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092024820
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1109/tip.2013.2263145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643585
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1109/tip.2013.2276651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643676
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1109/tmi.2016.2602339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696801
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1109/tnnls.2016.2616445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719305
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1109/tpami.2014.2353639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744734
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1111/1467-9876.00191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005068213
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1111/rssc.12213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083718889
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1136/bjophthalmol-2016-308586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062766474
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1142/s0218001401000836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062949188
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1145/640075.640111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029402627
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1158/0008-5472.can-03-3308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021208106
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1167/iovs.12-9933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025916483
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1371/journal.pcbi.1003904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047141045
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1890/120103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025981776
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.2307/2529204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974892
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.4018/978-1-5225-1941-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096035625
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.4018/978-1-5225-2947-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096015601
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.4018/ijaci.2017040106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084448506
    300 rdf:type schema:CreativeWork
    301 https://www.grid.ac/institutes/grid.411655.2 schema:alternateName Chung Hua University
    302 schema:name Chung Hua University, Hsinchu, Taiwan
    303 rdf:type schema:Organization
    304 https://www.grid.ac/institutes/grid.412813.d schema:alternateName Vellore Institute of Technology University
    305 schema:name School of Computing Science and Engineering, VIT University, Chennai, Tamil Nadu, India
    306 VIT University, Vellore, India
    307 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...