Reference Anchor Selection and Global Optimized Solution for DV-Hop Localization in Wireless Sensor Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Linqing Gui, Xiaorong Zhang, Quan Ding, Feng Shu, Anne Wei

ABSTRACT

Localization is a fundamental issue in wireless sensor networks (WSN). Among typical range-free localization algorithms, distance vector-hop (DV-Hop) is preferred as it can localize unknown nodes with less than three neighbor anchors. However, the accuracy of DV-Hop localization is low due to its multi-hop nature and defective position-calculation procedure. This paper first investigates a neglected issue during position calculation, i.e., reference anchor selection problem in the third step of DV-Hop. Then in order to solve this problem, two new algorithms are proposed. As for the first algorithm named as RAS DV-Hop, since every anchor can act as a reference anchor, an unknown node can obtain several candidate positions, and the best candidate that has the most similar distance to anchors with the unknown node is chosen as the final estimated position. The second algorithm named as GOS DV-Hop provides a global optimized solution for the third step of DV-Hop, achieves better accuracy than RAS DV-Hop, but has higher computation complexity. Simulation results indicate that both proposed algorithms achieves better precision, compared to typical DV-Hop based algorithms. More... »

PAGES

5995-6005

References to SciGraph publications

  • 2003-01. DV Based Positioning in Ad Hoc Networks in TELECOMMUNICATION SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11277-017-4459-x

    DOI

    http://dx.doi.org/10.1007/s11277-017-4459-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085592955


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.410579.e", 
              "name": [
                "Nanjing University of Science and Technology, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gui", 
            "givenName": "Linqing", 
            "id": "sg:person.01345260406.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345260406.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "San Francisco State University", 
              "id": "https://www.grid.ac/institutes/grid.263091.f", 
              "name": [
                "San Francisco State University, San Francisco, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaorong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "The Home Depot Techshed, San Francisco, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ding", 
            "givenName": "Quan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.410579.e", 
              "name": [
                "Nanjing University of Science and Technology, Nanjing, China", 
                "China Research Institute of Radiowave Propagation, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shu", 
            "givenName": "Feng", 
            "id": "sg:person.013240321257.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240321257.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Conservatoire National des Arts et M\u00e9tiers", 
              "id": "https://www.grid.ac/institutes/grid.36823.3c", 
              "name": [
                "CNAM, CEDRIC, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Anne", 
            "id": "sg:person.011622752145.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622752145.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1023403323460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003555411", 
              "https://doi.org/10.1023/a:1023403323460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/938985.938995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006947734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el.2014.1541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056755361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ietfec/e91-a.8.2232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059671257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpds.2008.239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061753346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4304/jnw.9.01.176-182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072451383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccsit.2010.5565188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093736234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wcsn.2009.5434802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094151453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/plans.2004.1309046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094759960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/eeei.2004.1361078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094832806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sahcn.2006.288442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095597339"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10", 
        "datePublishedReg": "2017-10-01", 
        "description": "Localization is a fundamental issue in wireless sensor networks (WSN). Among typical range-free localization algorithms, distance vector-hop (DV-Hop) is preferred as it can localize unknown nodes with less than three neighbor anchors. However, the accuracy of DV-Hop localization is low due to its multi-hop nature and defective position-calculation procedure. This paper first investigates a neglected issue during position calculation, i.e., reference anchor selection problem in the third step of DV-Hop. Then in order to solve this problem, two new algorithms are proposed. As for the first algorithm named as RAS DV-Hop, since every anchor can act as a reference anchor, an unknown node can obtain several candidate positions, and the best candidate that has the most similar distance to anchors with the unknown node is chosen as the final estimated position. The second algorithm named as GOS DV-Hop provides a global optimized solution for the third step of DV-Hop, achieves better accuracy than RAS DV-Hop, but has higher computation complexity. Simulation results indicate that both proposed algorithms achieves better precision, compared to typical DV-Hop based algorithms.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11277-017-4459-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7184254", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052655", 
            "issn": [
              "0929-6212", 
              "1572-834X"
            ], 
            "name": "Wireless Personal Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "96"
          }
        ], 
        "name": "Reference Anchor Selection and Global Optimized Solution for DV-Hop Localization in Wireless Sensor Networks", 
        "pagination": "5995-6005", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "34abae1c8f73694af8d27b9a7075f7f189507213a399753e480ec80195612b74"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11277-017-4459-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085592955"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11277-017-4459-x", 
          "https://app.dimensions.ai/details/publication/pub.1085592955"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11277-017-4459-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-4459-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-4459-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-4459-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-017-4459-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11277-017-4459-x schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author N01f496a5c9a849c0aa5651932729a3e0
    4 schema:citation sg:pub.10.1023/a:1023403323460
    5 https://doi.org/10.1049/el.2014.1541
    6 https://doi.org/10.1093/ietfec/e91-a.8.2232
    7 https://doi.org/10.1109/eeei.2004.1361078
    8 https://doi.org/10.1109/iccsit.2010.5565188
    9 https://doi.org/10.1109/plans.2004.1309046
    10 https://doi.org/10.1109/sahcn.2006.288442
    11 https://doi.org/10.1109/tpds.2008.239
    12 https://doi.org/10.1109/wcsn.2009.5434802
    13 https://doi.org/10.1145/938985.938995
    14 https://doi.org/10.4304/jnw.9.01.176-182
    15 schema:datePublished 2017-10
    16 schema:datePublishedReg 2017-10-01
    17 schema:description Localization is a fundamental issue in wireless sensor networks (WSN). Among typical range-free localization algorithms, distance vector-hop (DV-Hop) is preferred as it can localize unknown nodes with less than three neighbor anchors. However, the accuracy of DV-Hop localization is low due to its multi-hop nature and defective position-calculation procedure. This paper first investigates a neglected issue during position calculation, i.e., reference anchor selection problem in the third step of DV-Hop. Then in order to solve this problem, two new algorithms are proposed. As for the first algorithm named as RAS DV-Hop, since every anchor can act as a reference anchor, an unknown node can obtain several candidate positions, and the best candidate that has the most similar distance to anchors with the unknown node is chosen as the final estimated position. The second algorithm named as GOS DV-Hop provides a global optimized solution for the third step of DV-Hop, achieves better accuracy than RAS DV-Hop, but has higher computation complexity. Simulation results indicate that both proposed algorithms achieves better precision, compared to typical DV-Hop based algorithms.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N11f238b9ccf5424790c6ae9447cf5199
    22 Nd7f9f76a5a8d4ad5b176ff6890ba9aa2
    23 sg:journal.1052655
    24 schema:name Reference Anchor Selection and Global Optimized Solution for DV-Hop Localization in Wireless Sensor Networks
    25 schema:pagination 5995-6005
    26 schema:productId N50b1f5b4ae934930861a30aa6c22e7de
    27 N5f397be9e0094d3bbd5add6f0a782e24
    28 Nb9f962ced0684d79a9ac7876530b324f
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085592955
    30 https://doi.org/10.1007/s11277-017-4459-x
    31 schema:sdDatePublished 2019-04-11T09:54
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N7cf9085302d54a078dc19192afcacd73
    34 schema:url https://link.springer.com/10.1007%2Fs11277-017-4459-x
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N01f496a5c9a849c0aa5651932729a3e0 rdf:first sg:person.01345260406.79
    39 rdf:rest N1292d7abd48541c1b72aed33b89561f3
    40 N04cb54e4d41147dc9c35d36965aeb821 schema:affiliation https://www.grid.ac/institutes/grid.263091.f
    41 schema:familyName Zhang
    42 schema:givenName Xiaorong
    43 rdf:type schema:Person
    44 N11f238b9ccf5424790c6ae9447cf5199 schema:volumeNumber 96
    45 rdf:type schema:PublicationVolume
    46 N1292d7abd48541c1b72aed33b89561f3 rdf:first N04cb54e4d41147dc9c35d36965aeb821
    47 rdf:rest N25dffa42dad846a1ba6c7e48509d2659
    48 N17c1a76e5b1e4c72b348cd7a06efb989 schema:affiliation N35b19900c7d7456bb1da0aa82fd33189
    49 schema:familyName Ding
    50 schema:givenName Quan
    51 rdf:type schema:Person
    52 N25dffa42dad846a1ba6c7e48509d2659 rdf:first N17c1a76e5b1e4c72b348cd7a06efb989
    53 rdf:rest N40ab898a354b4412b961cedcf21cb863
    54 N35b19900c7d7456bb1da0aa82fd33189 schema:name The Home Depot Techshed, San Francisco, CA, USA
    55 rdf:type schema:Organization
    56 N40ab898a354b4412b961cedcf21cb863 rdf:first sg:person.013240321257.96
    57 rdf:rest N410296d3fe2449949ae66b63c6464253
    58 N410296d3fe2449949ae66b63c6464253 rdf:first sg:person.011622752145.79
    59 rdf:rest rdf:nil
    60 N50b1f5b4ae934930861a30aa6c22e7de schema:name dimensions_id
    61 schema:value pub.1085592955
    62 rdf:type schema:PropertyValue
    63 N5f397be9e0094d3bbd5add6f0a782e24 schema:name doi
    64 schema:value 10.1007/s11277-017-4459-x
    65 rdf:type schema:PropertyValue
    66 N7cf9085302d54a078dc19192afcacd73 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Nb9f962ced0684d79a9ac7876530b324f schema:name readcube_id
    69 schema:value 34abae1c8f73694af8d27b9a7075f7f189507213a399753e480ec80195612b74
    70 rdf:type schema:PropertyValue
    71 Nd7f9f76a5a8d4ad5b176ff6890ba9aa2 schema:issueNumber 4
    72 rdf:type schema:PublicationIssue
    73 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Technology
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Communications Technologies
    78 rdf:type schema:DefinedTerm
    79 sg:grant.7184254 http://pending.schema.org/fundedItem sg:pub.10.1007/s11277-017-4459-x
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1052655 schema:issn 0929-6212
    82 1572-834X
    83 schema:name Wireless Personal Communications
    84 rdf:type schema:Periodical
    85 sg:person.011622752145.79 schema:affiliation https://www.grid.ac/institutes/grid.36823.3c
    86 schema:familyName Wei
    87 schema:givenName Anne
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622752145.79
    89 rdf:type schema:Person
    90 sg:person.013240321257.96 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
    91 schema:familyName Shu
    92 schema:givenName Feng
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240321257.96
    94 rdf:type schema:Person
    95 sg:person.01345260406.79 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
    96 schema:familyName Gui
    97 schema:givenName Linqing
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345260406.79
    99 rdf:type schema:Person
    100 sg:pub.10.1023/a:1023403323460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003555411
    101 https://doi.org/10.1023/a:1023403323460
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1049/el.2014.1541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056755361
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1093/ietfec/e91-a.8.2232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059671257
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/eeei.2004.1361078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094832806
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/iccsit.2010.5565188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093736234
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/plans.2004.1309046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094759960
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/sahcn.2006.288442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095597339
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/tpds.2008.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061753346
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/wcsn.2009.5434802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094151453
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1145/938985.938995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006947734
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.4304/jnw.9.01.176-182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072451383
    122 rdf:type schema:CreativeWork
    123 https://www.grid.ac/institutes/grid.263091.f schema:alternateName San Francisco State University
    124 schema:name San Francisco State University, San Francisco, CA, USA
    125 rdf:type schema:Organization
    126 https://www.grid.ac/institutes/grid.36823.3c schema:alternateName Conservatoire National des Arts et Métiers
    127 schema:name CNAM, CEDRIC, Paris, France
    128 rdf:type schema:Organization
    129 https://www.grid.ac/institutes/grid.410579.e schema:alternateName Nanjing University of Science and Technology
    130 schema:name China Research Institute of Radiowave Propagation, Qingdao, China
    131 Nanjing University of Science and Technology, Nanjing, China
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...