Continuous Gesture Recognition using HLAC and Low-Dimensional Space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01

AUTHORS

JongMin Kim, Kyungyong Chung, Myunga Kang

ABSTRACT

This study proposes a continuous gesture recognition using information about features of motions obtained from continuous gesture images through higher order correlation feature coefficient and principal component analysis (PCA). The proposed method, first, separates two-dimensional silhouette gesture region from a continuous input image that includes a human body image. Information about 35 features are extracted using the higher order local auto correlation coefficient in the divided image and a low-dimensional gesture space is composed using PCA. The model feature value reflected in the gesture space is composed of symbols of certain conditions through clustering algorithm so as to be used as the input symbol of a hidden marker model, and a random input motion is recognized as the relevant gesture model with the highest probability value. The proposed method has less computation workload than the previous geometric feature-based method or appearance-based method and shows a high recognition rate with using the minimum information, so it is very suitable for the construction of a real-time system. In addition, the recognized gesture can be used input data of various applications like dynamic motion type game by mapping to an operating system. And the human motions can be used the objects of observation, such as smart home and behavior analysis in special spaces. More... »

PAGES

255-270

References to SciGraph publications

  • 2014-09. Mining-based associative image filtering using harmonic mean in CLUSTER COMPUTING
  • 2015-03. Mobile, ubiquitous multimedia and digital convergence in CLUSTER COMPUTING
  • 2012-03. Motion history image: its variants and applications in MACHINE VISION AND APPLICATIONS
  • 2015-08. Convergence security systems in JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES
  • 2016-03. Knowledge-based dietary nutrition recommendation for obese management in INFORMATION TECHNOLOGY AND MANAGEMENT
  • 2015-04. Interactive pain nursing intervention system for smart health service in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2015-06. Emergency situation monitoring service using context motion tracking of chronic disease patients in CLUSTER COMPUTING
  • 2014-08. Discovery of automotive design paradigm using relevance feedback in PERSONAL AND UBIQUITOUS COMPUTING
  • 2015-06. Improvement of speech signal extraction method using detection filter of energy spectrum entropy in CLUSTER COMPUTING
  • 1991-09. The Computer for the 21st Century in SCIENTIFIC AMERICAN
  • 2014-03. Development of head detection and tracking systems for visual surveillance in PERSONAL AND UBIQUITOUS COMPUTING
  • 2014-12. Real-Time Tracking and Recognition Systems for Interactive Telemedicine Health Services in WIRELESS PERSONAL COMMUNICATIONS
  • 2015-07. Distributed hybrid P2P networking systems in PEER-TO-PEER NETWORKING AND APPLICATIONS
  • 2015-03. Sequential pattern profiling based bio-detection for smart health service in CLUSTER COMPUTING
  • 2014-07. Ontology-based healthcare context information model to implement ubiquitous environment in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2015-10. Ontology-based inference system for adaptive object recognition in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2014-01. 3D simulator for stability analysis of finite slope causing plane activity in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2014-12. Recent Trends in Digital Convergence Information System in WIRELESS PERSONAL COMMUNICATIONS
  • 2016-01. Slope Based Intelligent 3D Disaster Simulation Using Physics Engine in WIRELESS PERSONAL COMMUNICATIONS
  • 1995-01. Visual learning and recognition of 3-d objects from appearance in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2013-06. Recent trends on high-performance computing and security in CLUSTER COMPUTING
  • 2016-03. Knowledge-based health service considering user convenience using hybrid Wi-Fi P2P in INFORMATION TECHNOLOGY AND MANAGEMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11277-015-3068-9

    DOI

    http://dx.doi.org/10.1007/s11277-015-3068-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024476823


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Creative Economy Support Team, Jeonnam Center for Creative Economy & Innovation, 32, Deokchung 2-gil, Yeosu-si, 550-812, Jeollanam-do, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "JongMin", 
            "id": "sg:person.07404660645.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404660645.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangji University", 
              "id": "https://www.grid.ac/institutes/grid.412417.5", 
              "name": [
                "School of Computer Information Engineering, Sangji University, 83, Sangjidae-gil, 220-702, Wonju-si, Gangwon-do, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "Kyungyong", 
            "id": "sg:person.015747500237.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747500237.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gwangju University", 
              "id": "https://www.grid.ac/institutes/grid.443795.8", 
              "name": [
                "Division of Computer Information Engineering, Gwangju University, 277, Hyodeok-ro, Nam-gu, Gwangju, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Myunga", 
            "id": "sg:person.011470752405.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470752405.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/962081.962107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001747710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0991-94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002170344", 
              "https://doi.org/10.1038/scientificamerican0991-94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-015-0440-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008142134", 
              "https://doi.org/10.1007/s10586-015-0440-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-014-0370-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008304601", 
              "https://doi.org/10.1007/s10586-014-0370-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12083-014-0298-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009402232", 
              "https://doi.org/10.1007/s12083-014-0298-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-013-0271-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013109402", 
              "https://doi.org/10.1007/s10586-013-0271-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-014-0398-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015400046", 
              "https://doi.org/10.1007/s10586-014-0398-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00779-013-0738-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018521312", 
              "https://doi.org/10.1007/s00779-013-0738-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01421486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020275860", 
              "https://doi.org/10.1007/bf01421486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01421486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020275860", 
              "https://doi.org/10.1007/bf01421486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11277-015-2788-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022112124", 
              "https://doi.org/10.1007/s11277-015-2788-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-013-0318-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022629858", 
              "https://doi.org/10.1007/s10586-013-0318-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-014-1923-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022896927", 
              "https://doi.org/10.1007/s11042-014-1923-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11277-014-2182-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027226857", 
              "https://doi.org/10.1007/s11277-014-2182-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-011-0919-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029685400", 
              "https://doi.org/10.1007/s11042-011-0919-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10799-015-0218-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034525930", 
              "https://doi.org/10.1007/s10799-015-0218-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10799-015-0241-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035062182", 
              "https://doi.org/10.1007/s10799-015-0241-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-013-1356-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041006054", 
              "https://doi.org/10.1007/s11042-013-1356-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11416-015-0248-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044889111", 
              "https://doi.org/10.1007/s11416-015-0248-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11277-014-1784-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046771205", 
              "https://doi.org/10.1007/s11277-014-1784-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-015-0429-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048860103", 
              "https://doi.org/10.1007/s10586-015-0429-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00138-010-0298-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050136440", 
              "https://doi.org/10.1007/s00138-010-0298-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-013-1738-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052310261", 
              "https://doi.org/10.1007/s11042-013-1738-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00779-013-0668-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053592611", 
              "https://doi.org/10.1007/s00779-013-0668-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.598226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.18626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061178979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ted.2006.878024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061592159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3233/thc-140822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078917619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2000.905299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093419186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.1998.711084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095089432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.1998.712092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095152340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.1998.670952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095289936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iciap.2003.1234101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095601105"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-01", 
        "datePublishedReg": "2016-01-01", 
        "description": "This study proposes a continuous gesture recognition using information about features of motions obtained from continuous gesture images through higher order correlation feature coefficient and principal component analysis (PCA). The proposed method, first, separates two-dimensional silhouette gesture region from a continuous input image that includes a human body image. Information about 35 features are extracted using the higher order local auto correlation coefficient in the divided image and a low-dimensional gesture space is composed using PCA. The model feature value reflected in the gesture space is composed of symbols of certain conditions through clustering algorithm so as to be used as the input symbol of a hidden marker model, and a random input motion is recognized as the relevant gesture model with the highest probability value. The proposed method has less computation workload than the previous geometric feature-based method or appearance-based method and shows a high recognition rate with using the minimum information, so it is very suitable for the construction of a real-time system. In addition, the recognized gesture can be used input data of various applications like dynamic motion type game by mapping to an operating system. And the human motions can be used the objects of observation, such as smart home and behavior analysis in special spaces.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11277-015-3068-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052655", 
            "issn": [
              "0929-6212", 
              "1572-834X"
            ], 
            "name": "Wireless Personal Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "86"
          }
        ], 
        "name": "Continuous Gesture Recognition using HLAC and Low-Dimensional Space", 
        "pagination": "255-270", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "749bc8768510088c8a9d080dbfa51890caf8542bdae5929c1172073bcec95bc0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11277-015-3068-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024476823"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11277-015-3068-9", 
          "https://app.dimensions.ai/details/publication/pub.1024476823"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11277-015-3068-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-015-3068-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-015-3068-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-015-3068-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-015-3068-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11277-015-3068-9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N25f9ca1ac14f405da4dbf39ae3416514
    4 schema:citation sg:pub.10.1007/bf01421486
    5 sg:pub.10.1007/s00138-010-0298-4
    6 sg:pub.10.1007/s00779-013-0668-9
    7 sg:pub.10.1007/s00779-013-0738-z
    8 sg:pub.10.1007/s10586-013-0271-x
    9 sg:pub.10.1007/s10586-013-0318-z
    10 sg:pub.10.1007/s10586-014-0370-3
    11 sg:pub.10.1007/s10586-014-0398-4
    12 sg:pub.10.1007/s10586-015-0429-9
    13 sg:pub.10.1007/s10586-015-0440-1
    14 sg:pub.10.1007/s10799-015-0218-4
    15 sg:pub.10.1007/s10799-015-0241-5
    16 sg:pub.10.1007/s11042-011-0919-6
    17 sg:pub.10.1007/s11042-013-1356-5
    18 sg:pub.10.1007/s11042-013-1738-8
    19 sg:pub.10.1007/s11042-014-1923-4
    20 sg:pub.10.1007/s11277-014-1784-1
    21 sg:pub.10.1007/s11277-014-2182-4
    22 sg:pub.10.1007/s11277-015-2788-1
    23 sg:pub.10.1007/s11416-015-0248-9
    24 sg:pub.10.1007/s12083-014-0298-7
    25 sg:pub.10.1038/scientificamerican0991-94
    26 https://doi.org/10.1109/34.598226
    27 https://doi.org/10.1109/5.18626
    28 https://doi.org/10.1109/afgr.1998.670952
    29 https://doi.org/10.1109/iciap.2003.1234101
    30 https://doi.org/10.1109/icpr.1998.711084
    31 https://doi.org/10.1109/icpr.1998.712092
    32 https://doi.org/10.1109/icpr.2000.905299
    33 https://doi.org/10.1109/ted.2006.878024
    34 https://doi.org/10.1145/962081.962107
    35 https://doi.org/10.3233/thc-140822
    36 schema:datePublished 2016-01
    37 schema:datePublishedReg 2016-01-01
    38 schema:description This study proposes a continuous gesture recognition using information about features of motions obtained from continuous gesture images through higher order correlation feature coefficient and principal component analysis (PCA). The proposed method, first, separates two-dimensional silhouette gesture region from a continuous input image that includes a human body image. Information about 35 features are extracted using the higher order local auto correlation coefficient in the divided image and a low-dimensional gesture space is composed using PCA. The model feature value reflected in the gesture space is composed of symbols of certain conditions through clustering algorithm so as to be used as the input symbol of a hidden marker model, and a random input motion is recognized as the relevant gesture model with the highest probability value. The proposed method has less computation workload than the previous geometric feature-based method or appearance-based method and shows a high recognition rate with using the minimum information, so it is very suitable for the construction of a real-time system. In addition, the recognized gesture can be used input data of various applications like dynamic motion type game by mapping to an operating system. And the human motions can be used the objects of observation, such as smart home and behavior analysis in special spaces.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N390edfadc6884d6597b58b38032e7265
    43 Nca26173f52e44015acde887b8a5f2449
    44 sg:journal.1052655
    45 schema:name Continuous Gesture Recognition using HLAC and Low-Dimensional Space
    46 schema:pagination 255-270
    47 schema:productId N38bd3cbaa93140dea6172a0c6c391c8a
    48 N7767fc4e24be4a61a9d1bcf625ae8a41
    49 Nf4de00300d5e4e62b270c761ce116e0d
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024476823
    51 https://doi.org/10.1007/s11277-015-3068-9
    52 schema:sdDatePublished 2019-04-11T00:18
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N2d10baf252b34afaa593eeb8df1bd291
    55 schema:url http://link.springer.com/10.1007%2Fs11277-015-3068-9
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N25f9ca1ac14f405da4dbf39ae3416514 rdf:first sg:person.07404660645.54
    60 rdf:rest Nee5a105f7d3d42daa6420d1510ed85f3
    61 N2a500b7f5bd44bd19946815367884224 schema:name Creative Economy Support Team, Jeonnam Center for Creative Economy & Innovation, 32, Deokchung 2-gil, Yeosu-si, 550-812, Jeollanam-do, Korea
    62 rdf:type schema:Organization
    63 N2d10baf252b34afaa593eeb8df1bd291 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N38bd3cbaa93140dea6172a0c6c391c8a schema:name doi
    66 schema:value 10.1007/s11277-015-3068-9
    67 rdf:type schema:PropertyValue
    68 N390edfadc6884d6597b58b38032e7265 schema:issueNumber 1
    69 rdf:type schema:PublicationIssue
    70 N7767fc4e24be4a61a9d1bcf625ae8a41 schema:name dimensions_id
    71 schema:value pub.1024476823
    72 rdf:type schema:PropertyValue
    73 N8365871863bc4265a0c17209895a0b3b rdf:first sg:person.011470752405.51
    74 rdf:rest rdf:nil
    75 Nca26173f52e44015acde887b8a5f2449 schema:volumeNumber 86
    76 rdf:type schema:PublicationVolume
    77 Nee5a105f7d3d42daa6420d1510ed85f3 rdf:first sg:person.015747500237.74
    78 rdf:rest N8365871863bc4265a0c17209895a0b3b
    79 Nf4de00300d5e4e62b270c761ce116e0d schema:name readcube_id
    80 schema:value 749bc8768510088c8a9d080dbfa51890caf8542bdae5929c1172073bcec95bc0
    81 rdf:type schema:PropertyValue
    82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Information and Computing Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Artificial Intelligence and Image Processing
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1052655 schema:issn 0929-6212
    89 1572-834X
    90 schema:name Wireless Personal Communications
    91 rdf:type schema:Periodical
    92 sg:person.011470752405.51 schema:affiliation https://www.grid.ac/institutes/grid.443795.8
    93 schema:familyName Kang
    94 schema:givenName Myunga
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470752405.51
    96 rdf:type schema:Person
    97 sg:person.015747500237.74 schema:affiliation https://www.grid.ac/institutes/grid.412417.5
    98 schema:familyName Chung
    99 schema:givenName Kyungyong
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747500237.74
    101 rdf:type schema:Person
    102 sg:person.07404660645.54 schema:affiliation N2a500b7f5bd44bd19946815367884224
    103 schema:familyName Kim
    104 schema:givenName JongMin
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404660645.54
    106 rdf:type schema:Person
    107 sg:pub.10.1007/bf01421486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020275860
    108 https://doi.org/10.1007/bf01421486
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s00138-010-0298-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050136440
    111 https://doi.org/10.1007/s00138-010-0298-4
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s00779-013-0668-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053592611
    114 https://doi.org/10.1007/s00779-013-0668-9
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00779-013-0738-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018521312
    117 https://doi.org/10.1007/s00779-013-0738-z
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s10586-013-0271-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013109402
    120 https://doi.org/10.1007/s10586-013-0271-x
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s10586-013-0318-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022629858
    123 https://doi.org/10.1007/s10586-013-0318-z
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s10586-014-0370-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008304601
    126 https://doi.org/10.1007/s10586-014-0370-3
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10586-014-0398-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015400046
    129 https://doi.org/10.1007/s10586-014-0398-4
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s10586-015-0429-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048860103
    132 https://doi.org/10.1007/s10586-015-0429-9
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10586-015-0440-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008142134
    135 https://doi.org/10.1007/s10586-015-0440-1
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10799-015-0218-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034525930
    138 https://doi.org/10.1007/s10799-015-0218-4
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10799-015-0241-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035062182
    141 https://doi.org/10.1007/s10799-015-0241-5
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s11042-011-0919-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029685400
    144 https://doi.org/10.1007/s11042-011-0919-6
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s11042-013-1356-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041006054
    147 https://doi.org/10.1007/s11042-013-1356-5
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s11042-013-1738-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052310261
    150 https://doi.org/10.1007/s11042-013-1738-8
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s11042-014-1923-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022896927
    153 https://doi.org/10.1007/s11042-014-1923-4
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11277-014-1784-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046771205
    156 https://doi.org/10.1007/s11277-014-1784-1
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s11277-014-2182-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027226857
    159 https://doi.org/10.1007/s11277-014-2182-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11277-015-2788-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022112124
    162 https://doi.org/10.1007/s11277-015-2788-1
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s11416-015-0248-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044889111
    165 https://doi.org/10.1007/s11416-015-0248-9
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s12083-014-0298-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009402232
    168 https://doi.org/10.1007/s12083-014-0298-7
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/scientificamerican0991-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170344
    171 https://doi.org/10.1038/scientificamerican0991-94
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/34.598226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156615
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/afgr.1998.670952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095289936
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/iciap.2003.1234101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095601105
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/icpr.1998.711084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095089432
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/icpr.1998.712092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095152340
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/icpr.2000.905299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093419186
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1109/ted.2006.878024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061592159
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1145/962081.962107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001747710
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.3233/thc-140822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078917619
    192 rdf:type schema:CreativeWork
    193 https://www.grid.ac/institutes/grid.412417.5 schema:alternateName Sangji University
    194 schema:name School of Computer Information Engineering, Sangji University, 83, Sangjidae-gil, 220-702, Wonju-si, Gangwon-do, Korea
    195 rdf:type schema:Organization
    196 https://www.grid.ac/institutes/grid.443795.8 schema:alternateName Gwangju University
    197 schema:name Division of Computer Information Engineering, Gwangju University, 277, Hyodeok-ro, Nam-gu, Gwangju, Korea
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...