Joint Estimation of TOA and DOA in IR-UWB System Using a Successive MUSIC Algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

Fangqiu Wang, Xiaofei Zhang, Fei Wang

ABSTRACT

Time-of-arrival (TOA) and direction-of-arrival (DOA) are key parameters in the impulse radio ultra wideband (IR-UWB) positioning system with a two-antennas receiver. A two-dimensional (2D) multiple signal classification (MUSIC) algorithm, which requires the 2D spectral peak search, can be used to estimate the parameters, but it has much higher computational complexity. This paper proposes a successive MUSIC algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak search. The proposed algorithm obtains the initial estimate of TOA corresponding to the first antenna via Root-MUSIC, and simplifies the 2D global search into successive one-dimensional searches to achieve the estimation of TOAs in the two antennas. It then estimates the DOA parameters via the difference of the TOAs between the two antennas. The proposed algorithm can get the parameters paired automatically, and has a much lower complexity than 2D-MUSIC algorithm. In addition, we have derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer–Rao bound of TOA and DOA estimation in the paper. The simulation results show that the parameter estimation performance of the proposed algorithm is better than that of Root-MUSIC, and is almost the same as that of 2D-MUSIC algorithm. Moreover, it has much better performance than matrix pencil algorithm, propagator method and estimation of signal parameters via rotational invariance techniques algorithm. More... »

PAGES

2445-2464

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11277-014-1644-z

DOI

http://dx.doi.org/10.1007/s11277-014-1644-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031985037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fangqiu", 
        "id": "sg:person.07567270331.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567270331.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
            "Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Ministry of Education, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiaofei", 
        "id": "sg:person.07502076375.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07502076375.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fei", 
        "id": "sg:person.013736176371.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736176371.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1020953424161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029753651", 
          "https://doi.org/10.1023/a:1020953424161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-f-1.1985.0110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056850833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/26.843135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061138529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/29.17564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061144363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/29.60109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061144727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsac.1987.1146527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061316131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2006.02019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061347222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2011.2152393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2004.1359140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2005.1458287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2006.883983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061496719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1986.1164815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2003.819035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061824453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2011.042211.100966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061827685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2011.072511.090933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061827791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2012.081612.120045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061828319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1001.2009.03376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071314533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1146.2009.00140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071345238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1146.2009.01102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071345370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccsc.2008.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094092554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iswpc.2010.5483709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094178885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetec.1997.605832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094204648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/biowireless.2012.6172734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094444706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2010.5651530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094540568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/milcom.1999.821389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094622646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icu.2005.1570024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094933679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wimob.2005.1512811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095060313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "Time-of-arrival (TOA) and direction-of-arrival (DOA) are key parameters in the impulse radio ultra wideband (IR-UWB) positioning system with a two-antennas receiver. A two-dimensional (2D) multiple signal classification (MUSIC) algorithm, which requires the 2D spectral peak search, can be used to estimate the parameters, but it has much higher computational complexity. This paper proposes a successive MUSIC algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak search. The proposed algorithm obtains the initial estimate of TOA corresponding to the first antenna via Root-MUSIC, and simplifies the 2D global search into successive one-dimensional searches to achieve the estimation of TOAs in the two antennas. It then estimates the DOA parameters via the difference of the TOAs between the two antennas. The proposed algorithm can get the parameters paired automatically, and has a much lower complexity than 2D-MUSIC algorithm. In addition, we have derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer\u2013Rao bound of TOA and DOA estimation in the paper. The simulation results show that the parameter estimation performance of the proposed algorithm is better than that of Root-MUSIC, and is almost the same as that of 2D-MUSIC algorithm. Moreover, it has much better performance than matrix pencil algorithm, propagator method and estimation of signal parameters via rotational invariance techniques algorithm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11277-014-1644-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052655", 
        "issn": [
          "0929-6212", 
          "1572-834X"
        ], 
        "name": "Wireless Personal Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "name": "Joint Estimation of TOA and DOA in IR-UWB System Using a Successive MUSIC Algorithm", 
    "pagination": "2445-2464", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "985eecf6f98f1296e7a94cf956f940fc115cb5dd4ea9a73cb2eb24d26beef668"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11277-014-1644-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031985037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11277-014-1644-z", 
      "https://app.dimensions.ai/details/publication/pub.1031985037"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11277-014-1644-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-014-1644-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-014-1644-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-014-1644-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-014-1644-z'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11277-014-1644-z schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Nc46980a822614f79b9e8fb187f377e55
4 schema:citation sg:pub.10.1023/a:1020953424161
5 https://doi.org/10.1049/ip-f-1.1985.0110
6 https://doi.org/10.1109/26.843135
7 https://doi.org/10.1109/29.17564
8 https://doi.org/10.1109/29.60109
9 https://doi.org/10.1109/biowireless.2012.6172734
10 https://doi.org/10.1109/iccsc.2008.119
11 https://doi.org/10.1109/icu.2005.1570024
12 https://doi.org/10.1109/igarss.2010.5651530
13 https://doi.org/10.1109/iswpc.2010.5483709
14 https://doi.org/10.1109/jsac.1987.1146527
15 https://doi.org/10.1109/lcomm.2006.02019
16 https://doi.org/10.1109/lsp.2011.2152393
17 https://doi.org/10.1109/milcom.1999.821389
18 https://doi.org/10.1109/msp.2004.1359140
19 https://doi.org/10.1109/msp.2005.1458287
20 https://doi.org/10.1109/tap.2006.883983
21 https://doi.org/10.1109/tassp.1986.1164815
22 https://doi.org/10.1109/twc.2003.819035
23 https://doi.org/10.1109/twc.2011.042211.100966
24 https://doi.org/10.1109/twc.2011.072511.090933
25 https://doi.org/10.1109/twc.2012.081612.120045
26 https://doi.org/10.1109/vetec.1997.605832
27 https://doi.org/10.1109/wimob.2005.1512811
28 https://doi.org/10.3724/sp.j.1001.2009.03376
29 https://doi.org/10.3724/sp.j.1146.2009.00140
30 https://doi.org/10.3724/sp.j.1146.2009.01102
31 schema:datePublished 2014-08
32 schema:datePublishedReg 2014-08-01
33 schema:description Time-of-arrival (TOA) and direction-of-arrival (DOA) are key parameters in the impulse radio ultra wideband (IR-UWB) positioning system with a two-antennas receiver. A two-dimensional (2D) multiple signal classification (MUSIC) algorithm, which requires the 2D spectral peak search, can be used to estimate the parameters, but it has much higher computational complexity. This paper proposes a successive MUSIC algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak search. The proposed algorithm obtains the initial estimate of TOA corresponding to the first antenna via Root-MUSIC, and simplifies the 2D global search into successive one-dimensional searches to achieve the estimation of TOAs in the two antennas. It then estimates the DOA parameters via the difference of the TOAs between the two antennas. The proposed algorithm can get the parameters paired automatically, and has a much lower complexity than 2D-MUSIC algorithm. In addition, we have derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer–Rao bound of TOA and DOA estimation in the paper. The simulation results show that the parameter estimation performance of the proposed algorithm is better than that of Root-MUSIC, and is almost the same as that of 2D-MUSIC algorithm. Moreover, it has much better performance than matrix pencil algorithm, propagator method and estimation of signal parameters via rotational invariance techniques algorithm.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N510e2cd374dc4a79ba737b290a0f9bd5
38 N92698ec7c595493783e08bf00eabc747
39 sg:journal.1052655
40 schema:name Joint Estimation of TOA and DOA in IR-UWB System Using a Successive MUSIC Algorithm
41 schema:pagination 2445-2464
42 schema:productId N1a7cbc3d877342ed8239321e952889e0
43 N225a6cd0beb940b98475f702fbd4a69e
44 N2505a122c66f4029b5eae9c57291ccd9
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031985037
46 https://doi.org/10.1007/s11277-014-1644-z
47 schema:sdDatePublished 2019-04-10T15:03
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nef0cec7fbd764a35861650645a3a60e7
50 schema:url http://link.springer.com/10.1007%2Fs11277-014-1644-z
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1a7cbc3d877342ed8239321e952889e0 schema:name readcube_id
55 schema:value 985eecf6f98f1296e7a94cf956f940fc115cb5dd4ea9a73cb2eb24d26beef668
56 rdf:type schema:PropertyValue
57 N225a6cd0beb940b98475f702fbd4a69e schema:name dimensions_id
58 schema:value pub.1031985037
59 rdf:type schema:PropertyValue
60 N2505a122c66f4029b5eae9c57291ccd9 schema:name doi
61 schema:value 10.1007/s11277-014-1644-z
62 rdf:type schema:PropertyValue
63 N510e2cd374dc4a79ba737b290a0f9bd5 schema:volumeNumber 77
64 rdf:type schema:PublicationVolume
65 N92698ec7c595493783e08bf00eabc747 schema:issueNumber 4
66 rdf:type schema:PublicationIssue
67 Nac4796c7986c42ffa2a95ff0a13fdeef rdf:first sg:person.07502076375.01
68 rdf:rest Nde9b45a3dd5c4a2c83b330f3af68244f
69 Nc46980a822614f79b9e8fb187f377e55 rdf:first sg:person.07567270331.87
70 rdf:rest Nac4796c7986c42ffa2a95ff0a13fdeef
71 Nde9b45a3dd5c4a2c83b330f3af68244f rdf:first sg:person.013736176371.59
72 rdf:rest rdf:nil
73 Nef0cec7fbd764a35861650645a3a60e7 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
79 schema:name Electrical and Electronic Engineering
80 rdf:type schema:DefinedTerm
81 sg:journal.1052655 schema:issn 0929-6212
82 1572-834X
83 schema:name Wireless Personal Communications
84 rdf:type schema:Periodical
85 sg:person.013736176371.59 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
86 schema:familyName Wang
87 schema:givenName Fei
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736176371.59
89 rdf:type schema:Person
90 sg:person.07502076375.01 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
91 schema:familyName Zhang
92 schema:givenName Xiaofei
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07502076375.01
94 rdf:type schema:Person
95 sg:person.07567270331.87 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
96 schema:familyName Wang
97 schema:givenName Fangqiu
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567270331.87
99 rdf:type schema:Person
100 sg:pub.10.1023/a:1020953424161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029753651
101 https://doi.org/10.1023/a:1020953424161
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1049/ip-f-1.1985.0110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056850833
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/26.843135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061138529
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/29.17564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144363
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/29.60109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144727
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/biowireless.2012.6172734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094444706
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/iccsc.2008.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094092554
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/icu.2005.1570024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094933679
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/igarss.2010.5651530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094540568
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/iswpc.2010.5483709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094178885
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/jsac.1987.1146527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061316131
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/lcomm.2006.02019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061347222
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/lsp.2011.2152393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377945
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/milcom.1999.821389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094622646
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/msp.2004.1359140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422196
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/msp.2005.1458287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422362
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tap.2006.883983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061496719
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tassp.1986.1164815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519845
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/twc.2003.819035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061824453
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/twc.2011.042211.100966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061827685
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/twc.2011.072511.090933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061827791
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/twc.2012.081612.120045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061828319
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/vetec.1997.605832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094204648
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/wimob.2005.1512811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095060313
148 rdf:type schema:CreativeWork
149 https://doi.org/10.3724/sp.j.1001.2009.03376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071314533
150 rdf:type schema:CreativeWork
151 https://doi.org/10.3724/sp.j.1146.2009.00140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071345238
152 rdf:type schema:CreativeWork
153 https://doi.org/10.3724/sp.j.1146.2009.01102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071345370
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
156 schema:name College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
157 Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Ministry of Education, 210016, Nanjing, China
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...