Resource Allocation for Real Time Services in LTE Networks: Resource Allocation Using Cooperative Game Theory and Virtual Token Mechanism View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09

AUTHORS

Mauricio Iturralde, Anne Wei, Tara Ali-Yahiya, André-Luc Beylot

ABSTRACT

The LTE specifications provide QoS for multimedia services with fast connectivity, high mobility and security. However, 3GPP specifications have not defined scheduling algorithms to exploit the LTE characteristics to support real time services. In this article we propose a two level scheduling scheme composed by cooperative game theory, a virtual token mechanism, and the well known algorithms EXP-RULE and Modified-Largest Weighted Delay Firs (M-LWDF) in downlink system. By using cooperative game theory such as bankruptcy game and Shapley value, the proposed mechanism works by forming coalitions between flow classes to distribute the bandwidth fairly among all of them. Both algorithms EXP-RULE and M-LWDF have been modified to use a virtual token mechanism to improve their performance, giving priority to real time flows. By taking the arrival rate of packets into account, the proposed mechanism partially included in previous schedulers has been adapted to this work to increase remarkably the performance of the resource allocation for real time flows. The performance evaluation is conducted in terms of system throughput, Packet loss ratio, total cell spectral efficiency, delay and fairness index. More... »

PAGES

1415-1435

References to SciGraph publications

  • 2009-12. Downlink Scheduling for Multiclass Traffic in LTE in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11277-013-1086-z

    DOI

    http://dx.doi.org/10.1007/s11277-013-1086-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013802963


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Toulouse", 
              "id": "https://www.grid.ac/institutes/grid.11417.32", 
              "name": [
                "Universit\u00e9 de Toulouse, IRIT/ENSEEIHT, Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iturralde", 
            "givenName": "Mauricio", 
            "id": "sg:person.015704062441.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704062441.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Conservatoire National des Arts et M\u00e9tiers", 
              "id": "https://www.grid.ac/institutes/grid.36823.3c", 
              "name": [
                "CNAM, Laboratoire c\u00e9dric, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Anne", 
            "id": "sg:person.011622752145.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622752145.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Recherche en Informatique", 
              "id": "https://www.grid.ac/institutes/grid.464180.f", 
              "name": [
                "Universit\u00e9 Paris Sud 11, LRI, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ali-Yahiya", 
            "givenName": "Tara", 
            "id": "sg:person.012347067177.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347067177.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Toulouse", 
              "id": "https://www.grid.ac/institutes/grid.11417.32", 
              "name": [
                "Universit\u00e9 de Toulouse, IRIT/ENSEEIHT, Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beylot", 
            "givenName": "Andr\u00e9-Luc", 
            "id": "sg:person.014006176357.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014006176357.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s1388-3437(01)80170-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007997278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-4896(82)90029-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017550595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2009/510617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040192123", 
              "https://doi.org/10.1155/2009/510617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/35.900644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061160115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcom.2009.4785383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061394974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcom.2009.5183477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061395078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcomm.2005.852826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061556017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2007.893755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061800507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2006.889570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061818912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2010.2091660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061820628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icc.2006.255766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093286066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icc.2002.997040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093502884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccs.2008.4737151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093526595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetecs.2000.851593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093795158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pimrc.2002.1045511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094409453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pimrc.2011.6139974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094967200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetecf.2004.1400171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095350585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetecf.2011.6092905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095381951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ew.2010.5483423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095384961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wcnc.2010.5506251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095684738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lanman.2004.1338435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095775262"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-09", 
        "datePublishedReg": "2013-09-01", 
        "description": "The LTE specifications provide QoS for multimedia services with fast connectivity, high mobility and security. However, 3GPP specifications have not defined scheduling algorithms to exploit the LTE characteristics to support real time services. In this article we propose a two level scheduling scheme composed by cooperative game theory, a virtual token mechanism, and the well known algorithms EXP-RULE and Modified-Largest Weighted Delay Firs (M-LWDF) in downlink system. By using cooperative game theory such as bankruptcy game and Shapley value, the proposed mechanism works by forming coalitions between flow classes to distribute the bandwidth fairly among all of them. Both algorithms EXP-RULE and M-LWDF have been modified to use a virtual token mechanism to improve their performance, giving priority to real time flows. By taking the arrival rate of packets into account, the proposed mechanism partially included in previous schedulers has been adapted to this work to increase remarkably the performance of the resource allocation for real time flows. The performance evaluation is conducted in terms of system throughput, Packet loss ratio, total cell spectral efficiency, delay and fairness index.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11277-013-1086-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052655", 
            "issn": [
              "0929-6212", 
              "1572-834X"
            ], 
            "name": "Wireless Personal Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "72"
          }
        ], 
        "name": "Resource Allocation for Real Time Services in LTE Networks: Resource Allocation Using Cooperative Game Theory and Virtual Token Mechanism", 
        "pagination": "1415-1435", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "41c167e24ae82c02dbbe73963ef291106e2a381e5eaaad855e8216fb024207ac"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11277-013-1086-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013802963"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11277-013-1086-z", 
          "https://app.dimensions.ai/details/publication/pub.1013802963"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000521.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11277-013-1086-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11277-013-1086-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11277-013-1086-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11277-013-1086-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11277-013-1086-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11277-013-1086-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nd1db1c13aebc4a50b22673e0f615e837
    4 schema:citation sg:pub.10.1155/2009/510617
    5 https://doi.org/10.1016/0165-4896(82)90029-4
    6 https://doi.org/10.1016/s1388-3437(01)80170-0
    7 https://doi.org/10.1109/35.900644
    8 https://doi.org/10.1109/ew.2010.5483423
    9 https://doi.org/10.1109/icc.2002.997040
    10 https://doi.org/10.1109/icc.2006.255766
    11 https://doi.org/10.1109/iccs.2008.4737151
    12 https://doi.org/10.1109/lanman.2004.1338435
    13 https://doi.org/10.1109/mcom.2009.4785383
    14 https://doi.org/10.1109/mcom.2009.5183477
    15 https://doi.org/10.1109/pimrc.2002.1045511
    16 https://doi.org/10.1109/pimrc.2011.6139974
    17 https://doi.org/10.1109/tcomm.2005.852826
    18 https://doi.org/10.1109/tsp.2007.893755
    19 https://doi.org/10.1109/tvt.2006.889570
    20 https://doi.org/10.1109/tvt.2010.2091660
    21 https://doi.org/10.1109/vetecf.2004.1400171
    22 https://doi.org/10.1109/vetecf.2011.6092905
    23 https://doi.org/10.1109/vetecs.2000.851593
    24 https://doi.org/10.1109/wcnc.2010.5506251
    25 schema:datePublished 2013-09
    26 schema:datePublishedReg 2013-09-01
    27 schema:description The LTE specifications provide QoS for multimedia services with fast connectivity, high mobility and security. However, 3GPP specifications have not defined scheduling algorithms to exploit the LTE characteristics to support real time services. In this article we propose a two level scheduling scheme composed by cooperative game theory, a virtual token mechanism, and the well known algorithms EXP-RULE and Modified-Largest Weighted Delay Firs (M-LWDF) in downlink system. By using cooperative game theory such as bankruptcy game and Shapley value, the proposed mechanism works by forming coalitions between flow classes to distribute the bandwidth fairly among all of them. Both algorithms EXP-RULE and M-LWDF have been modified to use a virtual token mechanism to improve their performance, giving priority to real time flows. By taking the arrival rate of packets into account, the proposed mechanism partially included in previous schedulers has been adapted to this work to increase remarkably the performance of the resource allocation for real time flows. The performance evaluation is conducted in terms of system throughput, Packet loss ratio, total cell spectral efficiency, delay and fairness index.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N1c55f0aa148f4c9fa70c74a2ccf0f648
    32 Ne4c44faa18d944c9a45b6f347c66da9b
    33 sg:journal.1052655
    34 schema:name Resource Allocation for Real Time Services in LTE Networks: Resource Allocation Using Cooperative Game Theory and Virtual Token Mechanism
    35 schema:pagination 1415-1435
    36 schema:productId N37457b700bdf453a83778eb95bfcceac
    37 N57756654f7db4b5e958f3ad5f61cb95f
    38 Nce9b90e1a2f740afad950b291211a8ee
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013802963
    40 https://doi.org/10.1007/s11277-013-1086-z
    41 schema:sdDatePublished 2019-04-10T18:22
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Nb365f89785d64e93a0d4171641542fd7
    44 schema:url http://link.springer.com/10.1007%2Fs11277-013-1086-z
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N04beef74735f4aa98176ddb980d10265 rdf:first sg:person.014006176357.39
    49 rdf:rest rdf:nil
    50 N1c55f0aa148f4c9fa70c74a2ccf0f648 schema:issueNumber 2
    51 rdf:type schema:PublicationIssue
    52 N263088eb444a48a38ccff62fabcd3c18 rdf:first sg:person.012347067177.37
    53 rdf:rest N04beef74735f4aa98176ddb980d10265
    54 N37457b700bdf453a83778eb95bfcceac schema:name doi
    55 schema:value 10.1007/s11277-013-1086-z
    56 rdf:type schema:PropertyValue
    57 N57756654f7db4b5e958f3ad5f61cb95f schema:name readcube_id
    58 schema:value 41c167e24ae82c02dbbe73963ef291106e2a381e5eaaad855e8216fb024207ac
    59 rdf:type schema:PropertyValue
    60 N8dacf3cc6dce49dfba3abe62bee41bc6 rdf:first sg:person.011622752145.79
    61 rdf:rest N263088eb444a48a38ccff62fabcd3c18
    62 Nb365f89785d64e93a0d4171641542fd7 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Nce9b90e1a2f740afad950b291211a8ee schema:name dimensions_id
    65 schema:value pub.1013802963
    66 rdf:type schema:PropertyValue
    67 Nd1db1c13aebc4a50b22673e0f615e837 rdf:first sg:person.015704062441.68
    68 rdf:rest N8dacf3cc6dce49dfba3abe62bee41bc6
    69 Ne4c44faa18d944c9a45b6f347c66da9b schema:volumeNumber 72
    70 rdf:type schema:PublicationVolume
    71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Information and Computing Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Artificial Intelligence and Image Processing
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1052655 schema:issn 0929-6212
    78 1572-834X
    79 schema:name Wireless Personal Communications
    80 rdf:type schema:Periodical
    81 sg:person.011622752145.79 schema:affiliation https://www.grid.ac/institutes/grid.36823.3c
    82 schema:familyName Wei
    83 schema:givenName Anne
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622752145.79
    85 rdf:type schema:Person
    86 sg:person.012347067177.37 schema:affiliation https://www.grid.ac/institutes/grid.464180.f
    87 schema:familyName Ali-Yahiya
    88 schema:givenName Tara
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347067177.37
    90 rdf:type schema:Person
    91 sg:person.014006176357.39 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
    92 schema:familyName Beylot
    93 schema:givenName André-Luc
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014006176357.39
    95 rdf:type schema:Person
    96 sg:person.015704062441.68 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
    97 schema:familyName Iturralde
    98 schema:givenName Mauricio
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704062441.68
    100 rdf:type schema:Person
    101 sg:pub.10.1155/2009/510617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040192123
    102 https://doi.org/10.1155/2009/510617
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/0165-4896(82)90029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017550595
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/s1388-3437(01)80170-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007997278
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/35.900644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160115
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1109/ew.2010.5483423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095384961
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1109/icc.2002.997040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093502884
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/icc.2006.255766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093286066
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/iccs.2008.4737151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093526595
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/lanman.2004.1338435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095775262
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/mcom.2009.4785383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061394974
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/mcom.2009.5183477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061395078
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/pimrc.2002.1045511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094409453
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/pimrc.2011.6139974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094967200
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/tcomm.2005.852826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061556017
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/tsp.2007.893755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800507
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/tvt.2006.889570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061818912
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/tvt.2010.2091660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061820628
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/vetecf.2004.1400171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095350585
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/vetecf.2011.6092905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095381951
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/vetecs.2000.851593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093795158
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/wcnc.2010.5506251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095684738
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.11417.32 schema:alternateName University of Toulouse
    145 schema:name Université de Toulouse, IRIT/ENSEEIHT, Toulouse, France
    146 rdf:type schema:Organization
    147 https://www.grid.ac/institutes/grid.36823.3c schema:alternateName Conservatoire National des Arts et Métiers
    148 schema:name CNAM, Laboratoire cédric, Paris, France
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.464180.f schema:alternateName Laboratoire de Recherche en Informatique
    151 schema:name Université Paris Sud 11, LRI, Paris, France
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...