On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Nimisha Ghosh, Indrajit Banerjee, R. Simon Sherratt

ABSTRACT

In a wireless sensor network (WSN), sensor nodes collect data from the environment and transfer this data to an end user through multi-hop communication. This results in high energy dissipation of the devices. Thus, balancing of energy consumption is a major concern in such kind of network. Appropriate cluster head (CH) selection may provide to be an efficient way to reduce the energy dissipation and prolonging the network lifetime in WSN. This paper has adopted the concept of fuzzy if-then rules to choose the cluster head based on certain fuzzy descriptors. To optimise the fuzzy membership functions, particle swarm optimisation has been used to improve their ranges. Moreover, recent study has confirmed that the introduction of a mobile collector in a network which collects data through short-range communications also aids in high energy conservation. In this work, the network is divided into clusters and a mobile collector starts from the static sink or base station and moves through each of these clusters and collect data from the chosen cluster heads in a single-hop fashion. Mobility based on ant-colony optimisation has already proven to be an efficient method which is utilised in this work. Additionally, instead of performing clustering in every round, CH is selected on demand. The performance of the proposed algorithm has been compared with some existing clustering algorithms. Simulation results show that the proposed protocol is more energy-efficient and provides better packet delivery ratio as compared to the existing protocols for data collection obtained through Matlab simulations. More... »

PAGES

1829-1845

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11276-017-1635-6

DOI

http://dx.doi.org/10.1007/s11276-017-1635-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093137196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Engineering Science and Technology, Shibpur", 
          "id": "https://www.grid.ac/institutes/grid.440667.7", 
          "name": [
            "Department of Information Technology, Indian Institute of Engineering Science and Technology, 711103, Shibpur, Howrah, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Nimisha", 
        "id": "sg:person.015134041015.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134041015.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Engineering Science and Technology, Shibpur", 
          "id": "https://www.grid.ac/institutes/grid.440667.7", 
          "name": [
            "Department of Information Technology, Indian Institute of Engineering Science and Technology, 711103, Shibpur, Howrah, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banerjee", 
        "givenName": "Indrajit", 
        "id": "sg:person.016213052737.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213052737.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "School of Systems Engineering, University of Reading, RG6 6AY, Berkshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherratt", 
        "givenName": "R. Simon", 
        "id": "sg:person.016506371677.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016506371677.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.future.2016.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007721497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2014.08.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008640400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-015-1156-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014924526", 
          "https://doi.org/10.1007/s11276-015-1156-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019202754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-016-3562-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020775112", 
          "https://doi.org/10.1007/s11277-016-3562-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-016-3562-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020775112", 
          "https://doi.org/10.1007/s11277-016-3562-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2012.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021744838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025939185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027306160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2015.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028012192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2003.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035647585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037450432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.07.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037871007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-016-1434-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040367067", 
          "https://doi.org/10.1007/s11276-016-1434-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-016-1434-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040367067", 
          "https://doi.org/10.1007/s11276-016-1434-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comst.2015.2388779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061258274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2010.2056916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061321379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2012.2204737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061322194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2012.2208742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061322218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2014.2328613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2015.2411598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2015.2424296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2015.2472970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061324293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2016.2601327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061325225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2012.073112.120450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061349652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2014.2379713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061350975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/surv.2013.050113.00191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2015.2446475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tce.2009.5277979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061546523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tce.2013.6490244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061547555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tce.2014.7027292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061547740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tce.2015.7389797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061547816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcomm.2015.2480088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061559879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2011.2158836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061631960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2004.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061689857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2007.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061690152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2010.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061690503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2016.2533390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061691606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2007.1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061753108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2012.2229309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061821553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2013.2291811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061822076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2017.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083536931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-017-1466-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083869226", 
          "https://doi.org/10.1007/s11276-017-1466-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-017-1466-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083869226", 
          "https://doi.org/10.1007/s11276-017-1466-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/snpa.2003.1203354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093729522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icaccs.2016.7586345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093913336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isgwcp.2016.7548266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094223430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcn.2010.5735777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094277144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2001.925197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094378933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2001.925197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094378933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/melcon.2016.7495403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094515293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icciautom.2016.7483170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094609911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icact.2008.4493846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094642599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.2000.926982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095577085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2002.1016600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096771649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2002.1016600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096771649"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "In a wireless sensor network (WSN), sensor nodes collect data from the environment and transfer this data to an end user through multi-hop communication. This results in high energy dissipation of the devices. Thus, balancing of energy consumption is a major concern in such kind of network. Appropriate cluster head (CH) selection may provide to be an efficient way to reduce the energy dissipation and prolonging the network lifetime in WSN. This paper has adopted the concept of fuzzy if-then rules to choose the cluster head based on certain fuzzy descriptors. To optimise the fuzzy membership functions, particle swarm optimisation has been used to improve their ranges. Moreover, recent study has confirmed that the introduction of a mobile collector in a network which collects data through short-range communications also aids in high energy conservation. In this work, the network is divided into clusters and a mobile collector starts from the static sink or base station and moves through each of these clusters and collect data from the chosen cluster heads in a single-hop fashion. Mobility based on ant-colony optimisation has already proven to be an efficient method which is utilised in this work. Additionally, instead of performing clustering in every round, CH is selected on demand. The performance of the proposed algorithm has been compared with some existing clustering algorithms. Simulation results show that the proposed protocol is more energy-efficient and provides better packet delivery ratio as compared to the existing protocols for data collection obtained through Matlab simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11276-017-1635-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327893", 
        "issn": [
          "1022-0038", 
          "1572-8196"
        ], 
        "name": "Wireless Networks", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor network", 
    "pagination": "1829-1845", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55d61ecc15e087f9f6664b2c7bb26484c0454cf858851802e773d7ebc5d7c700"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11276-017-1635-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093137196"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11276-017-1635-6", 
      "https://app.dimensions.ai/details/publication/pub.1093137196"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11276-017-1635-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1635-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1635-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1635-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1635-6'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      79 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11276-017-1635-6 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N7a65b8244b7c49d9a4227dba61defc02
4 schema:citation sg:pub.10.1007/s11276-015-1156-0
5 sg:pub.10.1007/s11276-016-1434-5
6 sg:pub.10.1007/s11276-017-1466-5
7 sg:pub.10.1007/s11277-016-3562-8
8 https://doi.org/10.1016/j.adhoc.2003.09.010
9 https://doi.org/10.1016/j.adhoc.2012.04.004
10 https://doi.org/10.1016/j.asoc.2012.12.029
11 https://doi.org/10.1016/j.asoc.2014.08.064
12 https://doi.org/10.1016/j.asoc.2015.03.018
13 https://doi.org/10.1016/j.asoc.2016.02.019
14 https://doi.org/10.1016/j.comnet.2017.02.001
15 https://doi.org/10.1016/j.compeleceng.2015.09.004
16 https://doi.org/10.1016/j.eswa.2010.07.112
17 https://doi.org/10.1016/j.eswa.2015.04.032
18 https://doi.org/10.1016/j.future.2016.08.004
19 https://doi.org/10.1109/comst.2015.2388779
20 https://doi.org/10.1109/hicss.2000.926982
21 https://doi.org/10.1109/icaccs.2016.7586345
22 https://doi.org/10.1109/icact.2008.4493846
23 https://doi.org/10.1109/icciautom.2016.7483170
24 https://doi.org/10.1109/icnn.1995.488968
25 https://doi.org/10.1109/ipdps.2001.925197
26 https://doi.org/10.1109/ipdps.2002.1016600
27 https://doi.org/10.1109/isgwcp.2016.7548266
28 https://doi.org/10.1109/jsen.2010.2056916
29 https://doi.org/10.1109/jsen.2012.2204737
30 https://doi.org/10.1109/jsen.2012.2208742
31 https://doi.org/10.1109/jsen.2014.2328613
32 https://doi.org/10.1109/jsen.2015.2411598
33 https://doi.org/10.1109/jsen.2015.2424296
34 https://doi.org/10.1109/jsen.2015.2472970
35 https://doi.org/10.1109/jsen.2016.2601327
36 https://doi.org/10.1109/lcn.2010.5735777
37 https://doi.org/10.1109/lcomm.2012.073112.120450
38 https://doi.org/10.1109/lcomm.2014.2379713
39 https://doi.org/10.1109/melcon.2016.7495403
40 https://doi.org/10.1109/snpa.2003.1203354
41 https://doi.org/10.1109/surv.2013.050113.00191
42 https://doi.org/10.1109/tcbb.2015.2446475
43 https://doi.org/10.1109/tce.2009.5277979
44 https://doi.org/10.1109/tce.2013.6490244
45 https://doi.org/10.1109/tce.2014.7027292
46 https://doi.org/10.1109/tce.2015.7389797
47 https://doi.org/10.1109/tcomm.2015.2480088
48 https://doi.org/10.1109/tii.2011.2158836
49 https://doi.org/10.1109/tmc.2004.41
50 https://doi.org/10.1109/tmc.2007.57
51 https://doi.org/10.1109/tmc.2010.193
52 https://doi.org/10.1109/tmc.2016.2533390
53 https://doi.org/10.1109/tpds.2007.1070
54 https://doi.org/10.1109/tvt.2012.2229309
55 https://doi.org/10.1109/tvt.2013.2291811
56 schema:datePublished 2019-05
57 schema:datePublishedReg 2019-05-01
58 schema:description In a wireless sensor network (WSN), sensor nodes collect data from the environment and transfer this data to an end user through multi-hop communication. This results in high energy dissipation of the devices. Thus, balancing of energy consumption is a major concern in such kind of network. Appropriate cluster head (CH) selection may provide to be an efficient way to reduce the energy dissipation and prolonging the network lifetime in WSN. This paper has adopted the concept of fuzzy if-then rules to choose the cluster head based on certain fuzzy descriptors. To optimise the fuzzy membership functions, particle swarm optimisation has been used to improve their ranges. Moreover, recent study has confirmed that the introduction of a mobile collector in a network which collects data through short-range communications also aids in high energy conservation. In this work, the network is divided into clusters and a mobile collector starts from the static sink or base station and moves through each of these clusters and collect data from the chosen cluster heads in a single-hop fashion. Mobility based on ant-colony optimisation has already proven to be an efficient method which is utilised in this work. Additionally, instead of performing clustering in every round, CH is selected on demand. The performance of the proposed algorithm has been compared with some existing clustering algorithms. Simulation results show that the proposed protocol is more energy-efficient and provides better packet delivery ratio as compared to the existing protocols for data collection obtained through Matlab simulations.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf N140892dc4c4d49b4976f5ab393455146
63 N1fe8c7648ecc42228b853f1922d86efe
64 sg:journal.1327893
65 schema:name On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor network
66 schema:pagination 1829-1845
67 schema:productId N35a261d57e08441dbb4248242ef687cb
68 N661f168888bb4bc3bb275580f4d26485
69 Nec2895b80f16451794025693e2f7d0c0
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093137196
71 https://doi.org/10.1007/s11276-017-1635-6
72 schema:sdDatePublished 2019-04-11T13:19
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nce63b421afa14e5d9728015c5eb88247
75 schema:url https://link.springer.com/10.1007%2Fs11276-017-1635-6
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N140892dc4c4d49b4976f5ab393455146 schema:volumeNumber 25
80 rdf:type schema:PublicationVolume
81 N1fe8c7648ecc42228b853f1922d86efe schema:issueNumber 4
82 rdf:type schema:PublicationIssue
83 N35a261d57e08441dbb4248242ef687cb schema:name readcube_id
84 schema:value 55d61ecc15e087f9f6664b2c7bb26484c0454cf858851802e773d7ebc5d7c700
85 rdf:type schema:PropertyValue
86 N661f168888bb4bc3bb275580f4d26485 schema:name doi
87 schema:value 10.1007/s11276-017-1635-6
88 rdf:type schema:PropertyValue
89 N748147243900471a9032de403762d652 rdf:first sg:person.016506371677.64
90 rdf:rest rdf:nil
91 N7a65b8244b7c49d9a4227dba61defc02 rdf:first sg:person.015134041015.87
92 rdf:rest Ncb18689737c24ca783f29029b47627c0
93 Ncb18689737c24ca783f29029b47627c0 rdf:first sg:person.016213052737.39
94 rdf:rest N748147243900471a9032de403762d652
95 Nce63b421afa14e5d9728015c5eb88247 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nec2895b80f16451794025693e2f7d0c0 schema:name dimensions_id
98 schema:value pub.1093137196
99 rdf:type schema:PropertyValue
100 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
101 schema:name Technology
102 rdf:type schema:DefinedTerm
103 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
104 schema:name Communications Technologies
105 rdf:type schema:DefinedTerm
106 sg:journal.1327893 schema:issn 1022-0038
107 1572-8196
108 schema:name Wireless Networks
109 rdf:type schema:Periodical
110 sg:person.015134041015.87 schema:affiliation https://www.grid.ac/institutes/grid.440667.7
111 schema:familyName Ghosh
112 schema:givenName Nimisha
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134041015.87
114 rdf:type schema:Person
115 sg:person.016213052737.39 schema:affiliation https://www.grid.ac/institutes/grid.440667.7
116 schema:familyName Banerjee
117 schema:givenName Indrajit
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213052737.39
119 rdf:type schema:Person
120 sg:person.016506371677.64 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
121 schema:familyName Sherratt
122 schema:givenName R. Simon
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016506371677.64
124 rdf:type schema:Person
125 sg:pub.10.1007/s11276-015-1156-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014924526
126 https://doi.org/10.1007/s11276-015-1156-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11276-016-1434-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040367067
129 https://doi.org/10.1007/s11276-016-1434-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11276-017-1466-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083869226
132 https://doi.org/10.1007/s11276-017-1466-5
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11277-016-3562-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020775112
135 https://doi.org/10.1007/s11277-016-3562-8
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.adhoc.2003.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035647585
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.adhoc.2012.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021744838
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.asoc.2012.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025939185
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.asoc.2014.08.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008640400
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.asoc.2015.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037450432
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.asoc.2016.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202754
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.comnet.2017.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083536931
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.compeleceng.2015.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028012192
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.eswa.2010.07.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037871007
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.eswa.2015.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027306160
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.future.2016.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007721497
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/comst.2015.2388779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061258274
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/hicss.2000.926982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095577085
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/icaccs.2016.7586345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093913336
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/icact.2008.4493846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094642599
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/icciautom.2016.7483170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094609911
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/ipdps.2001.925197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094378933
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/ipdps.2002.1016600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096771649
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/isgwcp.2016.7548266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094223430
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/jsen.2010.2056916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061321379
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/jsen.2012.2204737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322194
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/jsen.2012.2208742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322218
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/jsen.2014.2328613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323279
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/jsen.2015.2411598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323875
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/jsen.2015.2424296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323934
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/jsen.2015.2472970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061324293
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/jsen.2016.2601327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061325225
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/lcn.2010.5735777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094277144
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/lcomm.2012.073112.120450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061349652
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/lcomm.2014.2379713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061350975
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/melcon.2016.7495403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094515293
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/snpa.2003.1203354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093729522
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/surv.2013.050113.00191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446870
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tcbb.2015.2446475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541460
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tce.2009.5277979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061546523
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tce.2013.6490244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061547555
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tce.2014.7027292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061547740
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tce.2015.7389797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061547816
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tcomm.2015.2480088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061559879
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tii.2011.2158836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061631960
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tmc.2004.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061689857
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tmc.2007.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061690152
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tmc.2010.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061690503
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tmc.2016.2533390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061691606
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tpds.2007.1070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061753108
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/tvt.2012.2229309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061821553
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1109/tvt.2013.2291811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061822076
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.440667.7 schema:alternateName Indian Institute of Engineering Science and Technology, Shibpur
234 schema:name Department of Information Technology, Indian Institute of Engineering Science and Technology, 711103, Shibpur, Howrah, India
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
237 schema:name School of Systems Engineering, University of Reading, RG6 6AY, Berkshire, UK
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...