Load balancing routing with queue overflow prediction for WSNs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Hamadoun Tall, Gérard Chalhoub, Nadir Hakem, Michel Misson

ABSTRACT

The ease of deployment of Wireless Sensor Networks (WSNs) makes them very popular and useful for data collection applications. Nodes often use multihop communication to transmit data to a collector node. The next hop selection in order to reach the final destination is done following a routing policy based on a routing metric. The routing metric value is exchanged via control messages. Control messages transmission frequency can reduce the network bandwidth and affect data transmission. Some approaches like trickle algorithm have been proposed to optimize the network control messages transmission. In this paper, we propose a collaborative load balancing algorithm (CoLBA) with a prediction approach to reduce network overhead. CoLBA is a queuing delay based routing protocol that avoids packet queue overflow and uses a prediction approach to optimize control messages transmission. Simulation results on Cooja simulator show that CoLBA outperforms other existing protocols in terms of delivery ratio and queue overflow while maintaining a similar end-to-end delay. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11276-017-1554-6

DOI

http://dx.doi.org/10.1007/s11276-017-1554-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090372709


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Clermont Auvergne", 
          "id": "https://www.grid.ac/institutes/grid.494717.8", 
          "name": [
            "LIMOS UMR 6158 CNRS, University of Clermont Auvergne, Aubi\u00e8re, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tall", 
        "givenName": "Hamadoun", 
        "id": "sg:person.011647674334.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011647674334.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Clermont Auvergne", 
          "id": "https://www.grid.ac/institutes/grid.494717.8", 
          "name": [
            "LIMOS UMR 6158 CNRS, University of Clermont Auvergne, Aubi\u00e8re, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chalhoub", 
        "givenName": "G\u00e9rard", 
        "id": "sg:person.012115673711.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115673711.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 du Qu\u00e9bec en Abitibi-T\u00e9miscamingue", 
          "id": "https://www.grid.ac/institutes/grid.265704.2", 
          "name": [
            "Laboratoire de Recherche T\u00e9l\u00e9bec en Communications Souterraines (LRTCS), Universit\u00e9 du Qu\u00e9bec en Abitibi-T\u00e9miscamingue (UQAT), Val-dOr, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hakem", 
        "givenName": "Nadir", 
        "id": "sg:person.015061254103.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015061254103.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Clermont Auvergne", 
          "id": "https://www.grid.ac/institutes/grid.494717.8", 
          "name": [
            "LIMOS UMR 6158 CNRS, University of Clermont Auvergne, Aubi\u00e8re, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Misson", 
        "givenName": "Michel", 
        "id": "sg:person.012063653577.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063653577.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12243-016-0522-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005688063", 
          "https://doi.org/10.1007/s12243-016-0522-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12243-016-0522-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005688063", 
          "https://doi.org/10.1007/s12243-016-0522-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/csis110227057q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021390206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/958491.958523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033527429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-005-1766-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041701381", 
          "https://doi.org/10.1007/s11276-005-1766-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-005-1766-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041701381", 
          "https://doi.org/10.1007/s11276-005-1766-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-015-1110-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047755711", 
          "https://doi.org/10.1007/s11276-015-1110-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1631/jzus.c0910204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051565234", 
          "https://doi.org/10.1631/jzus.c0910204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1631/jzus.c0910204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051565234", 
          "https://doi.org/10.1631/jzus.c0910204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2012.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053221500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/65.539859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061205564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2011.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061753800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcn.2006.322172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093226363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cts.2011.5898912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093780141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cts.2011.5898912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093780141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcn.2004.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094438663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2009.5061905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094572161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cmc.2010.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094594044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icc.2009.5198616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094705035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dsdis.2015.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095107122"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "The ease of deployment of Wireless Sensor Networks (WSNs) makes them very popular and useful for data collection applications. Nodes often use multihop communication to transmit data to a collector node. The next hop selection in order to reach the final destination is done following a routing policy based on a routing metric. The routing metric value is exchanged via control messages. Control messages transmission frequency can reduce the network bandwidth and affect data transmission. Some approaches like trickle algorithm have been proposed to optimize the network control messages transmission. In this paper, we propose a collaborative load balancing algorithm (CoLBA) with a prediction approach to reduce network overhead. CoLBA is a queuing delay based routing protocol that avoids packet queue overflow and uses a prediction approach to optimize control messages transmission. Simulation results on Cooja simulator show that CoLBA outperforms other existing protocols in terms of delivery ratio and queue overflow while maintaining a similar end-to-end delay.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11276-017-1554-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327893", 
        "issn": [
          "1022-0038", 
          "1572-8196"
        ], 
        "name": "Wireless Networks", 
        "type": "Periodical"
      }
    ], 
    "name": "Load balancing routing with queue overflow prediction for WSNs", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcdbf30877f8760822d15cf07e701aa3d01029ed77571c9e543a23491aa7f3fa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11276-017-1554-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090372709"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11276-017-1554-6", 
      "https://app.dimensions.ai/details/publication/pub.1090372709"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11276-017-1554-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1554-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1554-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1554-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11276-017-1554-6'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      41 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11276-017-1554-6 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N8e6b93ca7a4942ce8aa4f635766e8dd5
4 schema:citation sg:pub.10.1007/s11276-005-1766-z
5 sg:pub.10.1007/s11276-015-1110-1
6 sg:pub.10.1007/s12243-016-0522-y
7 sg:pub.10.1631/jzus.c0910204
8 https://doi.org/10.1016/j.adhoc.2012.03.015
9 https://doi.org/10.1109/65.539859
10 https://doi.org/10.1109/cmc.2010.147
11 https://doi.org/10.1109/cts.2011.5898912
12 https://doi.org/10.1109/dsdis.2015.107
13 https://doi.org/10.1109/icc.2009.5198616
14 https://doi.org/10.1109/infcom.2009.5061905
15 https://doi.org/10.1109/lcn.2004.38
16 https://doi.org/10.1109/lcn.2006.322172
17 https://doi.org/10.1109/tpds.2011.24
18 https://doi.org/10.1145/958491.958523
19 https://doi.org/10.2298/csis110227057q
20 schema:datePublished 2019-01
21 schema:datePublishedReg 2019-01-01
22 schema:description The ease of deployment of Wireless Sensor Networks (WSNs) makes them very popular and useful for data collection applications. Nodes often use multihop communication to transmit data to a collector node. The next hop selection in order to reach the final destination is done following a routing policy based on a routing metric. The routing metric value is exchanged via control messages. Control messages transmission frequency can reduce the network bandwidth and affect data transmission. Some approaches like trickle algorithm have been proposed to optimize the network control messages transmission. In this paper, we propose a collaborative load balancing algorithm (CoLBA) with a prediction approach to reduce network overhead. CoLBA is a queuing delay based routing protocol that avoids packet queue overflow and uses a prediction approach to optimize control messages transmission. Simulation results on Cooja simulator show that CoLBA outperforms other existing protocols in terms of delivery ratio and queue overflow while maintaining a similar end-to-end delay.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf sg:journal.1327893
27 schema:name Load balancing routing with queue overflow prediction for WSNs
28 schema:pagination 1-11
29 schema:productId N5212f48bd0664016ad2282a6e006c80c
30 N95647a9549014eb8b8304c703f58608f
31 Nfdaaa04a8ea943eba16d5ed2eda60807
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090372709
33 https://doi.org/10.1007/s11276-017-1554-6
34 schema:sdDatePublished 2019-04-10T17:27
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N73ebe5d1c7a3412ebb1e4fec9670c0ce
37 schema:url http://link.springer.com/10.1007/s11276-017-1554-6
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N17553549866c41d9bef832a955b7cb65 rdf:first sg:person.012115673711.15
42 rdf:rest N6eb54da44f3c40748ac37f6310c9da41
43 N5212f48bd0664016ad2282a6e006c80c schema:name doi
44 schema:value 10.1007/s11276-017-1554-6
45 rdf:type schema:PropertyValue
46 N6eb54da44f3c40748ac37f6310c9da41 rdf:first sg:person.015061254103.26
47 rdf:rest Nd3638aed61d54d8988b449067fd19089
48 N73ebe5d1c7a3412ebb1e4fec9670c0ce schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N8e6b93ca7a4942ce8aa4f635766e8dd5 rdf:first sg:person.011647674334.44
51 rdf:rest N17553549866c41d9bef832a955b7cb65
52 N95647a9549014eb8b8304c703f58608f schema:name dimensions_id
53 schema:value pub.1090372709
54 rdf:type schema:PropertyValue
55 Nd3638aed61d54d8988b449067fd19089 rdf:first sg:person.012063653577.44
56 rdf:rest rdf:nil
57 Nfdaaa04a8ea943eba16d5ed2eda60807 schema:name readcube_id
58 schema:value fcdbf30877f8760822d15cf07e701aa3d01029ed77571c9e543a23491aa7f3fa
59 rdf:type schema:PropertyValue
60 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
61 schema:name Technology
62 rdf:type schema:DefinedTerm
63 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
64 schema:name Communications Technologies
65 rdf:type schema:DefinedTerm
66 sg:journal.1327893 schema:issn 1022-0038
67 1572-8196
68 schema:name Wireless Networks
69 rdf:type schema:Periodical
70 sg:person.011647674334.44 schema:affiliation https://www.grid.ac/institutes/grid.494717.8
71 schema:familyName Tall
72 schema:givenName Hamadoun
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011647674334.44
74 rdf:type schema:Person
75 sg:person.012063653577.44 schema:affiliation https://www.grid.ac/institutes/grid.494717.8
76 schema:familyName Misson
77 schema:givenName Michel
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063653577.44
79 rdf:type schema:Person
80 sg:person.012115673711.15 schema:affiliation https://www.grid.ac/institutes/grid.494717.8
81 schema:familyName Chalhoub
82 schema:givenName Gérard
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115673711.15
84 rdf:type schema:Person
85 sg:person.015061254103.26 schema:affiliation https://www.grid.ac/institutes/grid.265704.2
86 schema:familyName Hakem
87 schema:givenName Nadir
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015061254103.26
89 rdf:type schema:Person
90 sg:pub.10.1007/s11276-005-1766-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041701381
91 https://doi.org/10.1007/s11276-005-1766-z
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11276-015-1110-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047755711
94 https://doi.org/10.1007/s11276-015-1110-1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s12243-016-0522-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005688063
97 https://doi.org/10.1007/s12243-016-0522-y
98 rdf:type schema:CreativeWork
99 sg:pub.10.1631/jzus.c0910204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051565234
100 https://doi.org/10.1631/jzus.c0910204
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.adhoc.2012.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053221500
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/65.539859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061205564
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/cmc.2010.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094594044
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/cts.2011.5898912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093780141
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/dsdis.2015.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095107122
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/icc.2009.5198616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094705035
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/infcom.2009.5061905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094572161
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/lcn.2004.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094438663
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/lcn.2006.322172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093226363
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tpds.2011.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061753800
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/958491.958523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033527429
123 rdf:type schema:CreativeWork
124 https://doi.org/10.2298/csis110227057q schema:sameAs https://app.dimensions.ai/details/publication/pub.1021390206
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.265704.2 schema:alternateName Université du Québec en Abitibi-Témiscamingue
127 schema:name Laboratoire de Recherche Télébec en Communications Souterraines (LRTCS), Université du Québec en Abitibi-Témiscamingue (UQAT), Val-dOr, QC, Canada
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.494717.8 schema:alternateName University of Clermont Auvergne
130 schema:name LIMOS UMR 6158 CNRS, University of Clermont Auvergne, Aubière, France
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...