User’s mobility effect on the performance of wireless cellular networks serving elastic traffic View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

Mohamed Kadhem Karray

ABSTRACT

The objective of the present paper is to give an analytic approximation of the performance of elastic traffic in wireless cellular networks accounting for user’s mobility. To do so we build a Markovian model for users arrivals, departures and mobility in such networks; which we call WET model. We firstly consider intracell mobility where each user is confined to remain within its serving cell. Then we consider the complete mobility where users may either move within each cell or make a handover (i.e. change to another cell). We propose to approximate the WET model by a Whittle one for which the performance is expressed analytically. We validate the approximation by simulating an OFDMA cellular network. We observe that the Whittle approximation underestimates the throughput per user of the WET model. Thus it may be used for a conservative dimensioning of the cellular networks. Moreover, when the traffic demand and the user speed are moderate, the Whittle approximation is good and thus leads to a precise dimensioning. More... »

PAGES

247-262

Journal

TITLE

Wireless Networks

ISSUE

1

VOLUME

17

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11276-010-0277-8

DOI

http://dx.doi.org/10.1007/s11276-010-0277-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048127671


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "France Telecom, Research and Development Division, 38/40 rue du G\u00e9n\u00e9ral Leclerc, 92794, Issy-Moulineaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karray", 
        "givenName": "Mohamed Kadhem", 
        "id": "sg:person.015464012570.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464012570.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-95281-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001878118", 
          "https://doi.org/10.1007/978-3-642-95281-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-95281-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001878118", 
          "https://doi.org/10.1007/978-3-642-95281-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/938985.939020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004432073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-007-0079-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006201611", 
          "https://doi.org/10.1007/s11276-007-0079-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008760966", 
          "https://doi.org/10.1007/978-1-4757-3124-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008760966", 
          "https://doi.org/10.1007/978-1-4757-3124-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016335255", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11657-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016335255", 
          "https://doi.org/10.1007/978-3-662-11657-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11657-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016335255", 
          "https://doi.org/10.1007/978-3-662-11657-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11134-009-9144-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018937858", 
          "https://doi.org/10.1007/s11134-009-9144-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11134-009-9144-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018937858", 
          "https://doi.org/10.1007/s11134-009-9144-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1482-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020436633", 
          "https://doi.org/10.1007/978-1-4612-1482-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1482-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020436633", 
          "https://doi.org/10.1007/978-1-4612-1482-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024714024248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042925431", 
          "https://doi.org/10.1023/a:1024714024248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.923716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2009.5062040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093340637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ew.2009.5358006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093367273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ew.2009.5358006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093367273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2003.1208684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093771492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icupc.1995.496919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093813616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetecf.1999.800334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094011595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcnc.2002.993529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094073334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2004.1354597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094938096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcnc.2003.1200590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095336810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comnet.2009.5373549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095456952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infocom.2006.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095600122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2007.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095633482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511813498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098730425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109700932", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109700932", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471757195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700932"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01", 
    "datePublishedReg": "2011-01-01", 
    "description": "The objective of the present paper is to give an analytic approximation of the performance of elastic traffic in wireless cellular networks accounting for user\u2019s mobility. To do so we build a Markovian model for users arrivals, departures and mobility in such networks; which we call WET model. We firstly consider intracell mobility where each user is confined to remain within its serving cell. Then we consider the complete mobility where users may either move within each cell or make a handover (i.e. change to another cell). We propose to approximate the WET model by a Whittle one for which the performance is expressed analytically. We validate the approximation by simulating an OFDMA cellular network. We observe that the Whittle approximation underestimates the throughput per user of the WET model. Thus it may be used for a conservative dimensioning of the cellular networks. Moreover, when the traffic demand and the user speed are moderate, the Whittle approximation is good and thus leads to a precise dimensioning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11276-010-0277-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327893", 
        "issn": [
          "1022-0038", 
          "1572-8196"
        ], 
        "name": "Wireless Networks", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "User\u2019s mobility effect on the performance of wireless cellular networks serving elastic traffic", 
    "pagination": "247-262", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e545bba4cabf484b253ad7fd6bbc04abfd5eb1c4cc1fd8f99026862ca7cc31eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11276-010-0277-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048127671"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11276-010-0277-8", 
      "https://app.dimensions.ai/details/publication/pub.1048127671"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43259_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11276-010-0277-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11276-010-0277-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11276-010-0277-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11276-010-0277-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11276-010-0277-8'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11276-010-0277-8 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N700faa2baec8401fba946e50df12bb11
4 schema:citation sg:pub.10.1007/978-1-4612-1482-3
5 sg:pub.10.1007/978-1-4757-3124-8
6 sg:pub.10.1007/978-3-642-95281-4
7 sg:pub.10.1007/978-3-662-11657-9
8 sg:pub.10.1007/s11134-009-9144-7
9 sg:pub.10.1007/s11276-007-0079-9
10 sg:pub.10.1023/a:1024714024248
11 https://app.dimensions.ai/details/publication/pub.1016335255
12 https://app.dimensions.ai/details/publication/pub.1109700932
13 https://doi.org/10.1002/0471757195
14 https://doi.org/10.1017/cbo9780511813498
15 https://doi.org/10.1109/18.923716
16 https://doi.org/10.1109/comnet.2009.5373549
17 https://doi.org/10.1109/ew.2009.5358006
18 https://doi.org/10.1109/icupc.1995.496919
19 https://doi.org/10.1109/infcom.2003.1208684
20 https://doi.org/10.1109/infcom.2004.1354597
21 https://doi.org/10.1109/infcom.2007.28
22 https://doi.org/10.1109/infcom.2009.5062040
23 https://doi.org/10.1109/infocom.2006.175
24 https://doi.org/10.1109/vetecf.1999.800334
25 https://doi.org/10.1109/wcnc.2002.993529
26 https://doi.org/10.1109/wcnc.2003.1200590
27 https://doi.org/10.1145/938985.939020
28 schema:datePublished 2011-01
29 schema:datePublishedReg 2011-01-01
30 schema:description The objective of the present paper is to give an analytic approximation of the performance of elastic traffic in wireless cellular networks accounting for user’s mobility. To do so we build a Markovian model for users arrivals, departures and mobility in such networks; which we call WET model. We firstly consider intracell mobility where each user is confined to remain within its serving cell. Then we consider the complete mobility where users may either move within each cell or make a handover (i.e. change to another cell). We propose to approximate the WET model by a Whittle one for which the performance is expressed analytically. We validate the approximation by simulating an OFDMA cellular network. We observe that the Whittle approximation underestimates the throughput per user of the WET model. Thus it may be used for a conservative dimensioning of the cellular networks. Moreover, when the traffic demand and the user speed are moderate, the Whittle approximation is good and thus leads to a precise dimensioning.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N0effb4b2cc97476586cbf61d5d5e5c76
35 N19387b98222649538821b462a699d80a
36 sg:journal.1327893
37 schema:name User’s mobility effect on the performance of wireless cellular networks serving elastic traffic
38 schema:pagination 247-262
39 schema:productId N97783da5a5024b9e9517cbda31c308d2
40 Nc63987adf7ab4ac483163655f781600b
41 Nebba6909272e41b08675cf4d78354ebe
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048127671
43 https://doi.org/10.1007/s11276-010-0277-8
44 schema:sdDatePublished 2019-04-11T10:55
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nd96120e225b9440891baedb3390224e8
47 schema:url http://link.springer.com/10.1007%2Fs11276-010-0277-8
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0effb4b2cc97476586cbf61d5d5e5c76 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N19387b98222649538821b462a699d80a schema:volumeNumber 17
54 rdf:type schema:PublicationVolume
55 N700faa2baec8401fba946e50df12bb11 rdf:first sg:person.015464012570.16
56 rdf:rest rdf:nil
57 N97783da5a5024b9e9517cbda31c308d2 schema:name readcube_id
58 schema:value e545bba4cabf484b253ad7fd6bbc04abfd5eb1c4cc1fd8f99026862ca7cc31eb
59 rdf:type schema:PropertyValue
60 Nc63987adf7ab4ac483163655f781600b schema:name dimensions_id
61 schema:value pub.1048127671
62 rdf:type schema:PropertyValue
63 Nd96120e225b9440891baedb3390224e8 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nebba6909272e41b08675cf4d78354ebe schema:name doi
66 schema:value 10.1007/s11276-010-0277-8
67 rdf:type schema:PropertyValue
68 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
69 schema:name Technology
70 rdf:type schema:DefinedTerm
71 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
72 schema:name Communications Technologies
73 rdf:type schema:DefinedTerm
74 sg:journal.1327893 schema:issn 1022-0038
75 1572-8196
76 schema:name Wireless Networks
77 rdf:type schema:Periodical
78 sg:person.015464012570.16 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
79 schema:familyName Karray
80 schema:givenName Mohamed Kadhem
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464012570.16
82 rdf:type schema:Person
83 sg:pub.10.1007/978-1-4612-1482-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020436633
84 https://doi.org/10.1007/978-1-4612-1482-3
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/978-1-4757-3124-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008760966
87 https://doi.org/10.1007/978-1-4757-3124-8
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-642-95281-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001878118
90 https://doi.org/10.1007/978-3-642-95281-4
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-3-662-11657-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016335255
93 https://doi.org/10.1007/978-3-662-11657-9
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11134-009-9144-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018937858
96 https://doi.org/10.1007/s11134-009-9144-7
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11276-007-0079-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006201611
99 https://doi.org/10.1007/s11276-007-0079-9
100 rdf:type schema:CreativeWork
101 sg:pub.10.1023/a:1024714024248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042925431
102 https://doi.org/10.1023/a:1024714024248
103 rdf:type schema:CreativeWork
104 https://app.dimensions.ai/details/publication/pub.1016335255 schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1109700932 schema:CreativeWork
106 https://doi.org/10.1002/0471757195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700932
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1017/cbo9780511813498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098730425
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/18.923716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101644
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/comnet.2009.5373549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095456952
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/ew.2009.5358006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093367273
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/icupc.1995.496919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093813616
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/infcom.2003.1208684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093771492
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/infcom.2004.1354597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094938096
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/infcom.2007.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095633482
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/infcom.2009.5062040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093340637
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/infocom.2006.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095600122
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/vetecf.1999.800334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094011595
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/wcnc.2002.993529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094073334
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/wcnc.2003.1200590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095336810
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/938985.939020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004432073
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
137 schema:name France Telecom, Research and Development Division, 38/40 rue du Général Leclerc, 92794, Issy-Moulineaux, France
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...