Analysis of the Bluetooth device discovery protocol View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

Goutam Chakraborty, Kshirasagar Naik, Debasish Chakraborty, Norio Shiratori, David Wei

ABSTRACT

Device discovery and connection establishment are fundamental to communication between two Bluetooth (BT) devices. In this paper, we give an analytical model of the time it takes for the master in a piconet to discover one slave. We show that, even in the absence of packet interference, the discovery time can be long in some instances. We have simulated the discovery protocol by actually implementing it to validate the analytical model. By means of simulations, we show how discovery time is affected by (i) the presence of multiple potential slaves, and (ii) changes in the maximum backoff limit. Using simulation studies we observed the effectiveness of two proposed improvements to device discovery, namely, (i) avoiding repetitions of the A and B trains before a train switch, and (ii) eliminating the idea of random backoff, or reducing the backoff limit. We show that discovery time can be reduced by avoiding repetitions of the A and B trains before a train switch. However, complete elimination of the random backoff is not a good idea, as discovery time will be too long when the number of BT devices is large. Instead, choosing a small backoff limit of 250–300 slots is highly effective in reducing discovery time even in the presence of a large number (say, 50) of potential slaves. More... »

PAGES

421-436

References to SciGraph publications

  • 2002-03-28. Rendezvous Layer Protocols for Bluetooth-Enabled Smart Devices in TRENDS IN NETWORK AND PERVASIVE COMPUTING — ARCS 2002
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11276-008-0142-1

    DOI

    http://dx.doi.org/10.1007/s11276-008-0142-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018270641


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Iwate Prefectural University", 
              "id": "https://www.grid.ac/institutes/grid.443998.b", 
              "name": [
                "Department of Software and Information Science, Iwate Prefectural University, 020-0193, Iwate, Takizawamura, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakraborty", 
            "givenName": "Goutam", 
            "id": "sg:person.01361526151.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361526151.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naik", 
            "givenName": "Kshirasagar", 
            "id": "sg:person.016352526357.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352526357.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Research Institute of Electrical Communication, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakraborty", 
            "givenName": "Debasish", 
            "id": "sg:person.013512520563.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512520563.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Research Institute of Electrical Communication, Graduate School of Information Science, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiratori", 
            "givenName": "Norio", 
            "id": "sg:person.013550617101.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013550617101.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fordham University", 
              "id": "https://www.grid.ac/institutes/grid.256023.0", 
              "name": [
                "Department of Computer and Information Science, Fordham University, 10458, Bronx, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "David", 
            "id": "sg:person.010632642051.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010632642051.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45997-9_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010058609", 
              "https://doi.org/10.1007/3-540-45997-9_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45997-9_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010058609", 
              "https://doi.org/10.1007/3-540-45997-9_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2002.807338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061316369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2002.807340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061316370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2002.807345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061316374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mobhoc.2000.869227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093538300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vetecf.2004.1404923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094051594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vtc.2002.1002746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094674569"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-02", 
        "datePublishedReg": "2010-02-01", 
        "description": "Device discovery and connection establishment are fundamental to communication between two Bluetooth (BT) devices. In this paper, we give an analytical model of the time it takes for the master in a piconet to discover one slave. We show that, even in the absence of packet interference, the discovery time can be long in some instances. We have simulated the discovery protocol by actually implementing it to validate the analytical model. By means of simulations, we show how discovery time is affected by (i) the presence of multiple potential slaves, and (ii) changes in the maximum backoff limit. Using simulation studies we observed the effectiveness of two proposed improvements to device discovery, namely, (i) avoiding repetitions of the A and B trains before a train switch, and (ii) eliminating the idea of random backoff, or reducing the backoff limit. We show that discovery time can be reduced by avoiding repetitions of the A and B trains before a train switch. However, complete elimination of the random backoff is not a good idea, as discovery time will be too long when the number of BT devices is large. Instead, choosing a small backoff limit of 250\u2013300 slots is highly effective in reducing discovery time even in the presence of a large number (say, 50) of potential slaves.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11276-008-0142-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5967651", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5992755", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327893", 
            "issn": [
              "1022-0038", 
              "1572-8196"
            ], 
            "name": "Wireless Networks", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Analysis of the Bluetooth device discovery protocol", 
        "pagination": "421-436", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "570d4d00c880a6c8929ba619b18e0b64d62264c00bcd3b72c998fde306a4e345"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11276-008-0142-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018270641"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11276-008-0142-1", 
          "https://app.dimensions.ai/details/publication/pub.1018270641"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000521.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11276-008-0142-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11276-008-0142-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11276-008-0142-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11276-008-0142-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11276-008-0142-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11276-008-0142-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N89bc4821ce2a4440aa885999bf2c609e
    4 schema:citation sg:pub.10.1007/3-540-45997-9_19
    5 https://doi.org/10.1109/jsac.2002.807338
    6 https://doi.org/10.1109/jsac.2002.807340
    7 https://doi.org/10.1109/jsac.2002.807345
    8 https://doi.org/10.1109/mobhoc.2000.869227
    9 https://doi.org/10.1109/vetecf.2004.1404923
    10 https://doi.org/10.1109/vtc.2002.1002746
    11 schema:datePublished 2010-02
    12 schema:datePublishedReg 2010-02-01
    13 schema:description Device discovery and connection establishment are fundamental to communication between two Bluetooth (BT) devices. In this paper, we give an analytical model of the time it takes for the master in a piconet to discover one slave. We show that, even in the absence of packet interference, the discovery time can be long in some instances. We have simulated the discovery protocol by actually implementing it to validate the analytical model. By means of simulations, we show how discovery time is affected by (i) the presence of multiple potential slaves, and (ii) changes in the maximum backoff limit. Using simulation studies we observed the effectiveness of two proposed improvements to device discovery, namely, (i) avoiding repetitions of the A and B trains before a train switch, and (ii) eliminating the idea of random backoff, or reducing the backoff limit. We show that discovery time can be reduced by avoiding repetitions of the A and B trains before a train switch. However, complete elimination of the random backoff is not a good idea, as discovery time will be too long when the number of BT devices is large. Instead, choosing a small backoff limit of 250–300 slots is highly effective in reducing discovery time even in the presence of a large number (say, 50) of potential slaves.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N3e67208a28b2456bb276f7ec592359ed
    18 N9cbd021a0193426689d0822861b7ae20
    19 sg:journal.1327893
    20 schema:name Analysis of the Bluetooth device discovery protocol
    21 schema:pagination 421-436
    22 schema:productId N6335cbe6753f49889b8e1cdef7fc5435
    23 Na957a0800c7d432cb5d79196e8cc0ac3
    24 Nba5d5fc25f9d437683a1298c1e50daf5
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018270641
    26 https://doi.org/10.1007/s11276-008-0142-1
    27 schema:sdDatePublished 2019-04-11T02:07
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Nac3cb6a18e9e4414882b8d6eace70bdc
    30 schema:url http://link.springer.com/10.1007%2Fs11276-008-0142-1
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N3e67208a28b2456bb276f7ec592359ed schema:volumeNumber 16
    35 rdf:type schema:PublicationVolume
    36 N6335cbe6753f49889b8e1cdef7fc5435 schema:name dimensions_id
    37 schema:value pub.1018270641
    38 rdf:type schema:PropertyValue
    39 N68a89e4f6f9f4cb18c73509d3936001f rdf:first sg:person.016352526357.50
    40 rdf:rest N94ecd618c7774006864a1e889a171ed8
    41 N845aedf262374d9eacb27bcd7a934f10 rdf:first sg:person.010632642051.98
    42 rdf:rest rdf:nil
    43 N89bc4821ce2a4440aa885999bf2c609e rdf:first sg:person.01361526151.46
    44 rdf:rest N68a89e4f6f9f4cb18c73509d3936001f
    45 N94ecd618c7774006864a1e889a171ed8 rdf:first sg:person.013512520563.80
    46 rdf:rest Nf5075f56221e45189d62a4388f6448d7
    47 N9cbd021a0193426689d0822861b7ae20 schema:issueNumber 2
    48 rdf:type schema:PublicationIssue
    49 Na957a0800c7d432cb5d79196e8cc0ac3 schema:name doi
    50 schema:value 10.1007/s11276-008-0142-1
    51 rdf:type schema:PropertyValue
    52 Nac3cb6a18e9e4414882b8d6eace70bdc schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Nba5d5fc25f9d437683a1298c1e50daf5 schema:name readcube_id
    55 schema:value 570d4d00c880a6c8929ba619b18e0b64d62264c00bcd3b72c998fde306a4e345
    56 rdf:type schema:PropertyValue
    57 Nf5075f56221e45189d62a4388f6448d7 rdf:first sg:person.013550617101.54
    58 rdf:rest N845aedf262374d9eacb27bcd7a934f10
    59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Information and Computing Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Artificial Intelligence and Image Processing
    64 rdf:type schema:DefinedTerm
    65 sg:grant.5967651 http://pending.schema.org/fundedItem sg:pub.10.1007/s11276-008-0142-1
    66 rdf:type schema:MonetaryGrant
    67 sg:grant.5992755 http://pending.schema.org/fundedItem sg:pub.10.1007/s11276-008-0142-1
    68 rdf:type schema:MonetaryGrant
    69 sg:journal.1327893 schema:issn 1022-0038
    70 1572-8196
    71 schema:name Wireless Networks
    72 rdf:type schema:Periodical
    73 sg:person.010632642051.98 schema:affiliation https://www.grid.ac/institutes/grid.256023.0
    74 schema:familyName Wei
    75 schema:givenName David
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010632642051.98
    77 rdf:type schema:Person
    78 sg:person.013512520563.80 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    79 schema:familyName Chakraborty
    80 schema:givenName Debasish
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512520563.80
    82 rdf:type schema:Person
    83 sg:person.013550617101.54 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    84 schema:familyName Shiratori
    85 schema:givenName Norio
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013550617101.54
    87 rdf:type schema:Person
    88 sg:person.01361526151.46 schema:affiliation https://www.grid.ac/institutes/grid.443998.b
    89 schema:familyName Chakraborty
    90 schema:givenName Goutam
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361526151.46
    92 rdf:type schema:Person
    93 sg:person.016352526357.50 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    94 schema:familyName Naik
    95 schema:givenName Kshirasagar
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016352526357.50
    97 rdf:type schema:Person
    98 sg:pub.10.1007/3-540-45997-9_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010058609
    99 https://doi.org/10.1007/3-540-45997-9_19
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/jsac.2002.807338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061316369
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/jsac.2002.807340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061316370
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/jsac.2002.807345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061316374
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/mobhoc.2000.869227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093538300
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/vetecf.2004.1404923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094051594
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/vtc.2002.1002746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094674569
    112 rdf:type schema:CreativeWork
    113 https://www.grid.ac/institutes/grid.256023.0 schema:alternateName Fordham University
    114 schema:name Department of Computer and Information Science, Fordham University, 10458, Bronx, NY, USA
    115 rdf:type schema:Organization
    116 https://www.grid.ac/institutes/grid.443998.b schema:alternateName Iwate Prefectural University
    117 schema:name Department of Software and Information Science, Iwate Prefectural University, 020-0193, Iwate, Takizawamura, Japan
    118 rdf:type schema:Organization
    119 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    120 schema:name Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, Canada
    121 rdf:type schema:Organization
    122 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
    123 schema:name Research Institute of Electrical Communication, Graduate School of Information Science, Tohoku University, 980-8577, Sendai, Japan
    124 Research Institute of Electrical Communication, Tohoku University, 980-8577, Sendai, Japan
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...