Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-19

AUTHORS

Kun Liu, Yan Zhu, Ming Ye, Jinzhong Yang, Xianjun Cheng, Liangsheng Shi

ABSTRACT

This study is focused on investigating the impacts of organic carbon on the denitrification process of nitrogen transformation and transport. A numerical model, Nitrogen-2D, is modified by considering the impact of organic carbon in the denitrification equation. The modified model is used to simulate the soil nitrogen (including nitrate and ammonium) dynamics under the primary and secondary sewage water irrigation with different organic carbon concentrations. The simulated results of accumulated drainage water amount, soil nitrogen concentration, and nitrogen concentration in the drainage water show that the simulations and measurements are consistent. The comparison of results from the original and improved models shows the necessity to consider the impact of organic carbon. The nitrogen mass balance is calculated to analyze the nitrogen transformation processes quantitatively under different input organic carbon sources. Furthermore, the effect of different input organic carbon sources on the soil nitrogen dynamics is investigated by using the modified Nitrogen-2D model with the calibrated parameters. The input organic carbon source helps to speed up the mineralization and denitrification, which contributes to the slight increase of ammonium concentration and the decrease of nitrate concentration in the shallow soil. Since a large number of soil water and nitrogen transformation and transport parameters are needed when setting up the model, a local sensitivity method is conducted to evaluate the input parameters by the sewage water irrigation case. The results show that the drainage water amount is very sensitive to the exponent n and the coefficient α of the soil water retention function and that the ammonium concentration is very sensitive to the first-order nitrification rate constant, the decomposition rate coefficient in humus pool, and the soil ammonium adsorption coefficient. The nitrate concentration is sensitive to more parameters, especially to the exponent n and the coefficient α in the soil water retention function and to the denitrification rate constant. More... »

PAGES

173

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z

DOI

http://dx.doi.org/10.1007/s11270-018-3832-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104125729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.01272341355.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Ming", 
        "id": "sg:person.016425122141.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Institute of Water Resources and Hydropower Research, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.453304.5", 
          "name": [
            "China Institute of Water Resources and Hydropower Research, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Xianjun", 
        "id": "sg:person.01062713243.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062713243.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Liangsheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01051127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640296", 
          "https://doi.org/10.1007/bf01051127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00547132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015487151", 
          "https://doi.org/10.1007/bf00547132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-015-4860-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008406210", 
          "https://doi.org/10.1007/s11356-015-4860-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00374-003-0637-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050793518", 
          "https://doi.org/10.1007/s00374-003-0637-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-0350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050047728", 
          "https://doi.org/10.1007/s11431-009-0350-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-19", 
    "datePublishedReg": "2018-05-19", 
    "description": "This study is focused on investigating the impacts of organic carbon on the denitrification process of nitrogen transformation and transport. A numerical model, Nitrogen-2D, is modified by considering the impact of organic carbon in the denitrification equation. The modified model is used to simulate the soil nitrogen (including nitrate and ammonium) dynamics under the primary and secondary sewage water irrigation with different organic carbon concentrations. The simulated results of accumulated drainage water amount, soil nitrogen concentration, and nitrogen concentration in the drainage water show that the simulations and measurements are consistent. The comparison of results from the original and improved models shows the necessity to consider the impact of organic carbon. The nitrogen mass balance is calculated to analyze the nitrogen transformation processes quantitatively under different input organic carbon sources. Furthermore, the effect of different input organic carbon sources on the soil nitrogen dynamics is investigated by using the modified Nitrogen-2D model with the calibrated parameters. The input organic carbon source helps to speed up the mineralization and denitrification, which contributes to the slight increase of ammonium concentration and the decrease of nitrate concentration in the shallow soil. Since a large number of soil water and nitrogen transformation and transport parameters are needed when setting up the model, a local sensitivity method is conducted to evaluate the input parameters by the sewage water irrigation case. The results show that the drainage water amount is very sensitive to the exponent n and the coefficient \u03b1 of the soil water retention function and that the ammonium concentration is very sensitive to the first-order nitrification rate constant, the decomposition rate coefficient in humus pool, and the soil ammonium adsorption coefficient. The nitrate concentration is sensitive to more parameters, especially to the exponent n and the coefficient \u03b1 in the soil water retention function and to the denitrification rate constant.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11270-018-3832-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320065", 
        "issn": [
          "0049-6979", 
          "1573-2932"
        ], 
        "name": "Water, Air, & Soil Pollution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "229"
      }
    ], 
    "keywords": [
      "soil water retention function", 
      "soil nitrogen dynamics", 
      "sewage water irrigation", 
      "water retention function", 
      "organic carbon", 
      "nitrogen dynamics", 
      "organic carbon source", 
      "nitrogen transformations", 
      "retention function", 
      "water irrigation", 
      "soil nitrogen concentrations", 
      "nitrate concentrations", 
      "organic carbon concentrations", 
      "nitrogen concentration", 
      "ammonium concentrations", 
      "nitrification rate constants", 
      "humus pool", 
      "shallow soils", 
      "soil water", 
      "water amount", 
      "drainage water", 
      "irrigation cases", 
      "carbon concentration", 
      "denitrification rates", 
      "carbon source", 
      "adsorption coefficient", 
      "nitrogen mass balance", 
      "denitrification process", 
      "carbon", 
      "irrigation", 
      "decomposition rate coefficients", 
      "impact", 
      "mass balance", 
      "soil", 
      "water", 
      "dynamics", 
      "denitrification", 
      "mineralization", 
      "sensitivity analysis", 
      "pool", 
      "transport parameters", 
      "source", 
      "input parameters", 
      "modified model", 
      "concentration", 
      "slight increase", 
      "amount", 
      "improved model", 
      "large number", 
      "balance", 
      "transformation", 
      "Different Organic Carbon Concentrations", 
      "results", 
      "model", 
      "more parameters", 
      "simulated results", 
      "transport", 
      "comparison of results", 
      "increase", 
      "effect", 
      "parameters", 
      "numerical model", 
      "local sensitivity method", 
      "rate", 
      "process", 
      "decrease", 
      "necessity", 
      "study", 
      "number", 
      "coefficient", 
      "analysis", 
      "comparison", 
      "rate coefficients", 
      "function", 
      "sensitivity method", 
      "rate constants", 
      "simulations", 
      "numerical simulations", 
      "measurements", 
      "method", 
      "cases", 
      "exponent n", 
      "equations", 
      "coefficient \u03b1", 
      "constants", 
      "Nitrogen-2D", 
      "denitrification equation", 
      "secondary sewage water irrigation", 
      "drainage water amount", 
      "different input organic carbon sources", 
      "input organic carbon sources", 
      "modified Nitrogen-2D model", 
      "Nitrogen-2D model", 
      "sewage water irrigation case", 
      "water irrigation case", 
      "first-order nitrification rate constant", 
      "soil ammonium adsorption coefficient", 
      "ammonium adsorption coefficient"
    ], 
    "name": "Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon", 
    "pagination": "173", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104125729"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11270-018-3832-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11270-018-3832-z", 
      "https://app.dimensions.ai/details/publication/pub.1104125729"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_775.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11270-018-3832-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      22 PREDICATES      130 URIs      115 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11270-018-3832-z schema:about anzsrc-for:05
2 anzsrc-for:0503
3 anzsrc-for:09
4 anzsrc-for:0907
5 schema:author N66a209f8719b41899db9ad1d553f63be
6 schema:citation sg:pub.10.1007/bf00547132
7 sg:pub.10.1007/bf01051127
8 sg:pub.10.1007/s00374-003-0637-y
9 sg:pub.10.1007/s11356-015-4860-5
10 sg:pub.10.1007/s11431-009-0350-7
11 schema:datePublished 2018-05-19
12 schema:datePublishedReg 2018-05-19
13 schema:description This study is focused on investigating the impacts of organic carbon on the denitrification process of nitrogen transformation and transport. A numerical model, Nitrogen-2D, is modified by considering the impact of organic carbon in the denitrification equation. The modified model is used to simulate the soil nitrogen (including nitrate and ammonium) dynamics under the primary and secondary sewage water irrigation with different organic carbon concentrations. The simulated results of accumulated drainage water amount, soil nitrogen concentration, and nitrogen concentration in the drainage water show that the simulations and measurements are consistent. The comparison of results from the original and improved models shows the necessity to consider the impact of organic carbon. The nitrogen mass balance is calculated to analyze the nitrogen transformation processes quantitatively under different input organic carbon sources. Furthermore, the effect of different input organic carbon sources on the soil nitrogen dynamics is investigated by using the modified Nitrogen-2D model with the calibrated parameters. The input organic carbon source helps to speed up the mineralization and denitrification, which contributes to the slight increase of ammonium concentration and the decrease of nitrate concentration in the shallow soil. Since a large number of soil water and nitrogen transformation and transport parameters are needed when setting up the model, a local sensitivity method is conducted to evaluate the input parameters by the sewage water irrigation case. The results show that the drainage water amount is very sensitive to the exponent n and the coefficient α of the soil water retention function and that the ammonium concentration is very sensitive to the first-order nitrification rate constant, the decomposition rate coefficient in humus pool, and the soil ammonium adsorption coefficient. The nitrate concentration is sensitive to more parameters, especially to the exponent n and the coefficient α in the soil water retention function and to the denitrification rate constant.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N435d1b4f61574254b25a59894da2a434
18 Naf5be70202b44926905f4a7707e59f36
19 sg:journal.1320065
20 schema:keywords Different Organic Carbon Concentrations
21 Nitrogen-2D
22 Nitrogen-2D model
23 adsorption coefficient
24 ammonium adsorption coefficient
25 ammonium concentrations
26 amount
27 analysis
28 balance
29 carbon
30 carbon concentration
31 carbon source
32 cases
33 coefficient
34 coefficient α
35 comparison
36 comparison of results
37 concentration
38 constants
39 decomposition rate coefficients
40 decrease
41 denitrification
42 denitrification equation
43 denitrification process
44 denitrification rates
45 different input organic carbon sources
46 drainage water
47 drainage water amount
48 dynamics
49 effect
50 equations
51 exponent n
52 first-order nitrification rate constant
53 function
54 humus pool
55 impact
56 improved model
57 increase
58 input organic carbon sources
59 input parameters
60 irrigation
61 irrigation cases
62 large number
63 local sensitivity method
64 mass balance
65 measurements
66 method
67 mineralization
68 model
69 modified Nitrogen-2D model
70 modified model
71 more parameters
72 necessity
73 nitrate concentrations
74 nitrification rate constants
75 nitrogen concentration
76 nitrogen dynamics
77 nitrogen mass balance
78 nitrogen transformations
79 number
80 numerical model
81 numerical simulations
82 organic carbon
83 organic carbon concentrations
84 organic carbon source
85 parameters
86 pool
87 process
88 rate
89 rate coefficients
90 rate constants
91 results
92 retention function
93 secondary sewage water irrigation
94 sensitivity analysis
95 sensitivity method
96 sewage water irrigation
97 sewage water irrigation case
98 shallow soils
99 simulated results
100 simulations
101 slight increase
102 soil
103 soil ammonium adsorption coefficient
104 soil nitrogen concentrations
105 soil nitrogen dynamics
106 soil water
107 soil water retention function
108 source
109 study
110 transformation
111 transport
112 transport parameters
113 water
114 water amount
115 water irrigation
116 water irrigation case
117 water retention function
118 schema:name Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon
119 schema:pagination 173
120 schema:productId N0f4aac00ee4949ca8006e70f6ff220d3
121 N214719bb515d4557a95d62833c36fa33
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104125729
123 https://doi.org/10.1007/s11270-018-3832-z
124 schema:sdDatePublished 2021-12-01T19:41
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N95939274fb614ea5ab7b981e0bf9ed06
127 schema:url https://doi.org/10.1007/s11270-018-3832-z
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N05cca7d6714f40268f656fe0d21c2101 rdf:first sg:person.016425122141.09
132 rdf:rest N2319181cb6894860bb8c0f7c7dc62e55
133 N0f4aac00ee4949ca8006e70f6ff220d3 schema:name dimensions_id
134 schema:value pub.1104125729
135 rdf:type schema:PropertyValue
136 N214719bb515d4557a95d62833c36fa33 schema:name doi
137 schema:value 10.1007/s11270-018-3832-z
138 rdf:type schema:PropertyValue
139 N2319181cb6894860bb8c0f7c7dc62e55 rdf:first sg:person.014731165631.01
140 rdf:rest N5c1ee706fb75461b94fcd58946910020
141 N435d1b4f61574254b25a59894da2a434 schema:volumeNumber 229
142 rdf:type schema:PublicationVolume
143 N5c1ee706fb75461b94fcd58946910020 rdf:first sg:person.01062713243.37
144 rdf:rest N76ba746f739f4f8b8cb5b8ffd1fe6c39
145 N66a209f8719b41899db9ad1d553f63be rdf:first Na641597ede5f46eaa25e9ca66eee9851
146 rdf:rest N835cc19afed2402ea9e20afa0be78616
147 N76ba746f739f4f8b8cb5b8ffd1fe6c39 rdf:first sg:person.013753244525.37
148 rdf:rest rdf:nil
149 N835cc19afed2402ea9e20afa0be78616 rdf:first sg:person.01272341355.16
150 rdf:rest N05cca7d6714f40268f656fe0d21c2101
151 N95939274fb614ea5ab7b981e0bf9ed06 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 Na641597ede5f46eaa25e9ca66eee9851 schema:affiliation grid-institutes:grid.49470.3e
154 schema:familyName Liu
155 schema:givenName Kun
156 rdf:type schema:Person
157 Naf5be70202b44926905f4a7707e59f36 schema:issueNumber 6
158 rdf:type schema:PublicationIssue
159 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
160 schema:name Environmental Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
163 schema:name Soil Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
166 schema:name Engineering
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
169 schema:name Environmental Engineering
170 rdf:type schema:DefinedTerm
171 sg:journal.1320065 schema:issn 0049-6979
172 1573-2932
173 schema:name Water, Air, & Soil Pollution
174 schema:publisher Springer Nature
175 rdf:type schema:Periodical
176 sg:person.01062713243.37 schema:affiliation grid-institutes:grid.453304.5
177 schema:familyName Cheng
178 schema:givenName Xianjun
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062713243.37
180 rdf:type schema:Person
181 sg:person.01272341355.16 schema:affiliation grid-institutes:grid.49470.3e
182 schema:familyName Zhu
183 schema:givenName Yan
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16
185 rdf:type schema:Person
186 sg:person.013753244525.37 schema:affiliation grid-institutes:grid.49470.3e
187 schema:familyName Shi
188 schema:givenName Liangsheng
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
190 rdf:type schema:Person
191 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
192 schema:familyName Yang
193 schema:givenName Jinzhong
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
195 rdf:type schema:Person
196 sg:person.016425122141.09 schema:affiliation grid-institutes:grid.255986.5
197 schema:familyName Ye
198 schema:givenName Ming
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09
200 rdf:type schema:Person
201 sg:pub.10.1007/bf00547132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015487151
202 https://doi.org/10.1007/bf00547132
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/bf01051127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640296
205 https://doi.org/10.1007/bf01051127
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s00374-003-0637-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050793518
208 https://doi.org/10.1007/s00374-003-0637-y
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s11356-015-4860-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008406210
211 https://doi.org/10.1007/s11356-015-4860-5
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s11431-009-0350-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050047728
214 https://doi.org/10.1007/s11431-009-0350-7
215 rdf:type schema:CreativeWork
216 grid-institutes:grid.255986.5 schema:alternateName Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, FL, USA
217 schema:name Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, FL, USA
218 rdf:type schema:Organization
219 grid-institutes:grid.453304.5 schema:alternateName China Institute of Water Resources and Hydropower Research, 100044, Beijing, China
220 schema:name China Institute of Water Resources and Hydropower Research, 100044, Beijing, China
221 rdf:type schema:Organization
222 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
223 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...