Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Kun Liu, Yan Zhu, Ming Ye, Jinzhong Yang, Xianjun Cheng, Liangsheng Shi

ABSTRACT

This study is focused on investigating the impacts of organic carbon on the denitrification process of nitrogen transformation and transport. A numerical model, Nitrogen-2D, is modified by considering the impact of organic carbon in the denitrification equation. The modified model is used to simulate the soil nitrogen (including nitrate and ammonium) dynamics under the primary and secondary sewage water irrigation with different organic carbon concentrations. The simulated results of accumulated drainage water amount, soil nitrogen concentration, and nitrogen concentration in the drainage water show that the simulations and measurements are consistent. The comparison of results from the original and improved models shows the necessity to consider the impact of organic carbon. The nitrogen mass balance is calculated to analyze the nitrogen transformation processes quantitatively under different input organic carbon sources. Furthermore, the effect of different input organic carbon sources on the soil nitrogen dynamics is investigated by using the modified Nitrogen-2D model with the calibrated parameters. The input organic carbon source helps to speed up the mineralization and denitrification, which contributes to the slight increase of ammonium concentration and the decrease of nitrate concentration in the shallow soil. Since a large number of soil water and nitrogen transformation and transport parameters are needed when setting up the model, a local sensitivity method is conducted to evaluate the input parameters by the sewage water irrigation case. The results show that the drainage water amount is very sensitive to the exponent n and the coefficient α of the soil water retention function and that the ammonium concentration is very sensitive to the first-order nitrification rate constant, the decomposition rate coefficient in humus pool, and the soil ammonium adsorption coefficient. The nitrate concentration is sensitive to more parameters, especially to the exponent n and the coefficient α in the soil water retention function and to the denitrification rate constant. More... »

PAGES

173

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z

DOI

http://dx.doi.org/10.1007/s11270-018-3832-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104125729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.01272341355.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida State University", 
          "id": "https://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Ming", 
        "id": "sg:person.016425122141.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Institute of Water Resources and Hydropower Research", 
          "id": "https://www.grid.ac/institutes/grid.453304.5", 
          "name": [
            "China Institute of Water Resources and Hydropower Research, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Xianjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Liangsheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0144-8609(01)00071-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001345157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/sr02049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003429891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2006.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004849649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2015.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005427061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2007.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006592553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-015-4860-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008406210", 
          "https://doi.org/10.1007/s11356-015-4860-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008739893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01051127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640296", 
          "https://doi.org/10.1007/bf01051127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aquaeng.2005.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011638429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aquaeng.2005.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011638429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ird.354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013197533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.1993.tb00867.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013451588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.1993.tb00867.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013451588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2005.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013694246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7722(95)00073-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014785166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00547132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015487151", 
          "https://doi.org/10.1007/bf00547132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00547132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015487151", 
          "https://doi.org/10.1007/bf00547132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(94)00172-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016153766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-8574(93)90034-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020783943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-8574(93)90034-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020783943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1708(95)00027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021307662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/wsa.v31i2.5177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025192536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/wsa.v31i2.5177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025192536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.2000.tb02704.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026462218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.2000.tb02704.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026462218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2005.04.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030005278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031028555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031028555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600085567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032527588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600085567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032527588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600085567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032527588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2008.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032727902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2006.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035815811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-0717(88)90160-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036845391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-0717(88)90160-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036845391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2007.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041466643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2011.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042358151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jaer.1997.0250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047168860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-0350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050047728", 
          "https://doi.org/10.1007/s11431-009-0350-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-0350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050047728", 
          "https://doi.org/10.1007/s11431-009-0350-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00374-003-0637-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050793518", 
          "https://doi.org/10.1007/s00374-003-0637-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2000.45.8.1854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017004000000509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12783/issn.1544-8053/12/4/7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064667960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/jeq2004.0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069008382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/jeq2008.0318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069009986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2002.0197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075074736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronmonogr31.c13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088349978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2175/106143009x12445568399811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102024495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2175/106143009x12445568399811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102024495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "This study is focused on investigating the impacts of organic carbon on the denitrification process of nitrogen transformation and transport. A numerical model, Nitrogen-2D, is modified by considering the impact of organic carbon in the denitrification equation. The modified model is used to simulate the soil nitrogen (including nitrate and ammonium) dynamics under the primary and secondary sewage water irrigation with different organic carbon concentrations. The simulated results of accumulated drainage water amount, soil nitrogen concentration, and nitrogen concentration in the drainage water show that the simulations and measurements are consistent. The comparison of results from the original and improved models shows the necessity to consider the impact of organic carbon. The nitrogen mass balance is calculated to analyze the nitrogen transformation processes quantitatively under different input organic carbon sources. Furthermore, the effect of different input organic carbon sources on the soil nitrogen dynamics is investigated by using the modified Nitrogen-2D model with the calibrated parameters. The input organic carbon source helps to speed up the mineralization and denitrification, which contributes to the slight increase of ammonium concentration and the decrease of nitrate concentration in the shallow soil. Since a large number of soil water and nitrogen transformation and transport parameters are needed when setting up the model, a local sensitivity method is conducted to evaluate the input parameters by the sewage water irrigation case. The results show that the drainage water amount is very sensitive to the exponent n and the coefficient \u03b1 of the soil water retention function and that the ammonium concentration is very sensitive to the first-order nitrification rate constant, the decomposition rate coefficient in humus pool, and the soil ammonium adsorption coefficient. The nitrate concentration is sensitive to more parameters, especially to the exponent n and the coefficient \u03b1 in the soil water retention function and to the denitrification rate constant.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11270-018-3832-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320065", 
        "issn": [
          "0049-6979", 
          "1573-2932"
        ], 
        "name": "Water, Air, & Soil Pollution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "229"
      }
    ], 
    "name": "Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon", 
    "pagination": "173", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e355f4d953f595c7f3d699ad3e8d24099d477d19b47b57f0719af2592d6a5795"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11270-018-3832-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104125729"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11270-018-3832-z", 
      "https://app.dimensions.ai/details/publication/pub.1104125729"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11270-018-3832-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11270-018-3832-z'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11270-018-3832-z schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N730339e692d546a9accf6ccab2703d58
4 schema:citation sg:pub.10.1007/bf00547132
5 sg:pub.10.1007/bf01051127
6 sg:pub.10.1007/s00374-003-0637-y
7 sg:pub.10.1007/s11356-015-4860-5
8 sg:pub.10.1007/s11431-009-0350-7
9 https://doi.org/10.1002/ird.354
10 https://doi.org/10.1006/jaer.1997.0250
11 https://doi.org/10.1016/0038-0717(88)90160-5
12 https://doi.org/10.1016/0169-7722(95)00073-9
13 https://doi.org/10.1016/0304-3800(94)00172-e
14 https://doi.org/10.1016/0304-3800(94)90033-7
15 https://doi.org/10.1016/0309-1708(95)00027-5
16 https://doi.org/10.1016/0925-8574(93)90034-d
17 https://doi.org/10.1016/j.agwat.2006.07.009
18 https://doi.org/10.1016/j.agwat.2007.05.019
19 https://doi.org/10.1016/j.agwat.2007.06.001
20 https://doi.org/10.1016/j.agwat.2007.09.010
21 https://doi.org/10.1016/j.agwat.2011.07.021
22 https://doi.org/10.1016/j.agwat.2015.05.007
23 https://doi.org/10.1016/j.aquaeng.2005.04.004
24 https://doi.org/10.1016/j.chemosphere.2006.05.015
25 https://doi.org/10.1016/j.desal.2005.04.070
26 https://doi.org/10.1016/j.geoderma.2005.06.010
27 https://doi.org/10.1016/j.scitotenv.2008.08.022
28 https://doi.org/10.1016/s0144-8609(01)00071-1
29 https://doi.org/10.1017/s0021859600085567
30 https://doi.org/10.1071/sr02049
31 https://doi.org/10.1111/j.1745-6584.1993.tb00867.x
32 https://doi.org/10.1111/j.1745-6584.2000.tb02704.x
33 https://doi.org/10.1198/004017004000000509
34 https://doi.org/10.12783/issn.1544-8053/12/4/7
35 https://doi.org/10.2134/agronmonogr31.c13
36 https://doi.org/10.2134/jeq2004.0024
37 https://doi.org/10.2134/jeq2008.0318
38 https://doi.org/10.2166/wst.2002.0197
39 https://doi.org/10.2175/106143009x12445568399811
40 https://doi.org/10.4314/wsa.v31i2.5177
41 https://doi.org/10.4319/lo.2000.45.8.1854
42 schema:datePublished 2018-06
43 schema:datePublishedReg 2018-06-01
44 schema:description This study is focused on investigating the impacts of organic carbon on the denitrification process of nitrogen transformation and transport. A numerical model, Nitrogen-2D, is modified by considering the impact of organic carbon in the denitrification equation. The modified model is used to simulate the soil nitrogen (including nitrate and ammonium) dynamics under the primary and secondary sewage water irrigation with different organic carbon concentrations. The simulated results of accumulated drainage water amount, soil nitrogen concentration, and nitrogen concentration in the drainage water show that the simulations and measurements are consistent. The comparison of results from the original and improved models shows the necessity to consider the impact of organic carbon. The nitrogen mass balance is calculated to analyze the nitrogen transformation processes quantitatively under different input organic carbon sources. Furthermore, the effect of different input organic carbon sources on the soil nitrogen dynamics is investigated by using the modified Nitrogen-2D model with the calibrated parameters. The input organic carbon source helps to speed up the mineralization and denitrification, which contributes to the slight increase of ammonium concentration and the decrease of nitrate concentration in the shallow soil. Since a large number of soil water and nitrogen transformation and transport parameters are needed when setting up the model, a local sensitivity method is conducted to evaluate the input parameters by the sewage water irrigation case. The results show that the drainage water amount is very sensitive to the exponent n and the coefficient α of the soil water retention function and that the ammonium concentration is very sensitive to the first-order nitrification rate constant, the decomposition rate coefficient in humus pool, and the soil ammonium adsorption coefficient. The nitrate concentration is sensitive to more parameters, especially to the exponent n and the coefficient α in the soil water retention function and to the denitrification rate constant.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N33fd065165154f67bed18820496a7a86
49 N507854c7cfe94c03a330a2f44e7e93cc
50 sg:journal.1320065
51 schema:name Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon
52 schema:pagination 173
53 schema:productId N3e07d14495cb4c9197d44b4bcc81be51
54 N593d646e05dc4f98b4a041d7a47fcf44
55 N97d556743ebd43339ff4e6ca37abcf0f
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104125729
57 https://doi.org/10.1007/s11270-018-3832-z
58 schema:sdDatePublished 2019-04-10T23:40
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N19b7daef78a94e8ca8270553a99a7e81
61 schema:url https://link.springer.com/10.1007%2Fs11270-018-3832-z
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N19b7daef78a94e8ca8270553a99a7e81 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N1f8b4fd2c7ae4083988b2891cde092ac schema:affiliation https://www.grid.ac/institutes/grid.453304.5
68 schema:familyName Cheng
69 schema:givenName Xianjun
70 rdf:type schema:Person
71 N33fd065165154f67bed18820496a7a86 schema:issueNumber 6
72 rdf:type schema:PublicationIssue
73 N3e07d14495cb4c9197d44b4bcc81be51 schema:name dimensions_id
74 schema:value pub.1104125729
75 rdf:type schema:PropertyValue
76 N3f4fbfaffb48464cb174d6a6b8cf04b7 rdf:first sg:person.016425122141.09
77 rdf:rest N7885a53123044694809920d3159bf371
78 N507854c7cfe94c03a330a2f44e7e93cc schema:volumeNumber 229
79 rdf:type schema:PublicationVolume
80 N593d646e05dc4f98b4a041d7a47fcf44 schema:name doi
81 schema:value 10.1007/s11270-018-3832-z
82 rdf:type schema:PropertyValue
83 N6b5c89dc8e564e729f0fa7310d506f28 rdf:first sg:person.01272341355.16
84 rdf:rest N3f4fbfaffb48464cb174d6a6b8cf04b7
85 N730339e692d546a9accf6ccab2703d58 rdf:first Ne8e0a0e1690c449587d401fbcc5f538b
86 rdf:rest N6b5c89dc8e564e729f0fa7310d506f28
87 N7885a53123044694809920d3159bf371 rdf:first sg:person.014731165631.01
88 rdf:rest Ne96db8026a4d4007bc421dd357cc1982
89 N97d556743ebd43339ff4e6ca37abcf0f schema:name readcube_id
90 schema:value e355f4d953f595c7f3d699ad3e8d24099d477d19b47b57f0719af2592d6a5795
91 rdf:type schema:PropertyValue
92 Na4b12a175ae64310a4f42e6b83c74409 rdf:first sg:person.013753244525.37
93 rdf:rest rdf:nil
94 Ne8e0a0e1690c449587d401fbcc5f538b schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
95 schema:familyName Liu
96 schema:givenName Kun
97 rdf:type schema:Person
98 Ne96db8026a4d4007bc421dd357cc1982 rdf:first N1f8b4fd2c7ae4083988b2891cde092ac
99 rdf:rest Na4b12a175ae64310a4f42e6b83c74409
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
104 schema:name Environmental Engineering
105 rdf:type schema:DefinedTerm
106 sg:journal.1320065 schema:issn 0049-6979
107 1573-2932
108 schema:name Water, Air, & Soil Pollution
109 rdf:type schema:Periodical
110 sg:person.01272341355.16 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
111 schema:familyName Zhu
112 schema:givenName Yan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16
114 rdf:type schema:Person
115 sg:person.013753244525.37 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
116 schema:familyName Shi
117 schema:givenName Liangsheng
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
119 rdf:type schema:Person
120 sg:person.014731165631.01 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
121 schema:familyName Yang
122 schema:givenName Jinzhong
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
124 rdf:type schema:Person
125 sg:person.016425122141.09 schema:affiliation https://www.grid.ac/institutes/grid.255986.5
126 schema:familyName Ye
127 schema:givenName Ming
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09
129 rdf:type schema:Person
130 sg:pub.10.1007/bf00547132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015487151
131 https://doi.org/10.1007/bf00547132
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf01051127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640296
134 https://doi.org/10.1007/bf01051127
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00374-003-0637-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050793518
137 https://doi.org/10.1007/s00374-003-0637-y
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11356-015-4860-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008406210
140 https://doi.org/10.1007/s11356-015-4860-5
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11431-009-0350-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050047728
143 https://doi.org/10.1007/s11431-009-0350-7
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/ird.354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013197533
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1006/jaer.1997.0250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047168860
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0038-0717(88)90160-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036845391
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0169-7722(95)00073-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014785166
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0304-3800(94)00172-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1016153766
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0304-3800(94)90033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031028555
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0309-1708(95)00027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021307662
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0925-8574(93)90034-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1020783943
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.agwat.2006.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035815811
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.agwat.2007.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041466643
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.agwat.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008739893
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.agwat.2007.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006592553
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.agwat.2011.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042358151
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.agwat.2015.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005427061
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.aquaeng.2005.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011638429
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.chemosphere.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004849649
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.desal.2005.04.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030005278
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.geoderma.2005.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013694246
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.scitotenv.2008.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032727902
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0144-8609(01)00071-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001345157
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1017/s0021859600085567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032527588
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1071/sr02049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003429891
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.1745-6584.1993.tb00867.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013451588
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1745-6584.2000.tb02704.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026462218
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1198/004017004000000509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197582
194 rdf:type schema:CreativeWork
195 https://doi.org/10.12783/issn.1544-8053/12/4/7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064667960
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2134/agronmonogr31.c13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349978
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2134/jeq2004.0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069008382
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2134/jeq2008.0318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069009986
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2166/wst.2002.0197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075074736
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2175/106143009x12445568399811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102024495
206 rdf:type schema:CreativeWork
207 https://doi.org/10.4314/wsa.v31i2.5177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025192536
208 rdf:type schema:CreativeWork
209 https://doi.org/10.4319/lo.2000.45.8.1854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064647
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.255986.5 schema:alternateName Florida State University
212 schema:name Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, FL, USA
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.453304.5 schema:alternateName China Institute of Water Resources and Hydropower Research
215 schema:name China Institute of Water Resources and Hydropower Research, 100044, Beijing, China
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
218 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...