Efficient Removal of Dyes from Aqueous Solution by Mesoporous Nanocomposite Al2O3/Ni0.5Zn0.5Fe2O4 Microfibers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12-11

AUTHORS

Xinchun Yang, Zhou Wang, Maoxiang Jing, Ruijiang Liu, Lina Jin, Xiangqian Shen

ABSTRACT

A novel mesoporous, nanocomposite, magnetically separable adsorbent, namely activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfibers have been successfully prepared by the sol–gel process. These nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers are formed after calcination of the precursor at 450 °C for 3 h, and characterized with high aspect ratios and uniform diameters of 1–10 μm. In the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers, the spherical γ-Al2O3 particles are homogeneously embedded on the microfiber. Their specific surface areas and magnetic properties are significantly influenced by the γ-Al2O3 content and calcination conditions. With the designed γ-Al2O3 mass fraction of 0.2 and the calcination temperature of 550 °C, the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers possess a high specific surface area of 118.3 m2/g and saturation magnetization (Ms) of 20.4 Am2 kg−1, respectively. The adsorption behaviors of the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were examined using the Congo red and methyl blue dyes as the adsorbate. The adsorption kinetics, effects of the adsorbent dosage and solution pH, adsorption isotherms, and regeneration of the microfiber adsorbents were investigated. The pseudo-second-order model can be used to describe the adsorption kinetics. The resultant isotherm data are well fitted by the Temkin model, implying that the dyes adsorption on the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers is a multilayer adsorption combined with some degrees of chemical interactions. Considering the simple synthesis process, high adsorption and unique magnetic property, these mesoporous, magnetic, nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers can be used as a highly efficient, fast, and convenient adsorbent for dyes removal.HighlightsThe magnetic mesoporous Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were synthesized.Adsorption kinetics and adsorption isotherms were investigated.The separation, regeneration, and adsorption efficiency were enhanced.FigureThe novel mesoporous, magnetic, nanocomposite-activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfiber adsorbents can be used as an efficient, fast, and convenient tool for dyes removal from wastewater. More... »

PAGES

1819

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3

DOI

http://dx.doi.org/10.1007/s11270-013-1819-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051584689


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xinchun", 
        "id": "sg:person.014241762757.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014241762757.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhou", 
        "id": "sg:person.016650620457.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650620457.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jing", 
        "givenName": "Maoxiang", 
        "id": "sg:person.01162236364.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China", 
            "School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ruijiang", 
        "id": "sg:person.014115052743.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115052743.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Lina", 
        "id": "sg:person.016451743257.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016451743257.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Xiangqian", 
        "id": "sg:person.0601655670.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-011-0111-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031250878", 
          "https://doi.org/10.1007/s12274-011-0111-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10971-012-2755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021941744", 
          "https://doi.org/10.1007/s10971-012-2755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11270-012-1286-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003574914", 
          "https://doi.org/10.1007/s11270-012-1286-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12-11", 
    "datePublishedReg": "2013-12-11", 
    "description": "A novel mesoporous, nanocomposite, magnetically separable adsorbent, namely activated alumina (\u03b3-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfibers have been successfully prepared by the sol\u2013gel process. These nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers are formed after calcination of the precursor at 450\u00a0\u00b0C for 3\u00a0h, and characterized with high aspect ratios and uniform diameters of 1\u201310\u00a0\u03bcm. In the nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers, the spherical \u03b3-Al2O3 particles are homogeneously embedded on the microfiber. Their specific surface areas and magnetic properties are significantly influenced by the \u03b3-Al2O3 content and calcination conditions. With the designed \u03b3-Al2O3 mass fraction of 0.2 and the calcination temperature of 550\u00a0\u00b0C, the \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers possess a high specific surface area of 118.3\u00a0m2/g and saturation magnetization (Ms) of 20.4\u00a0Am2\u00a0kg\u22121, respectively. The adsorption behaviors of the nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were examined using the Congo red and methyl blue dyes as the adsorbate. The adsorption kinetics, effects of the adsorbent dosage and solution pH, adsorption isotherms, and regeneration of the microfiber adsorbents were investigated. The pseudo-second-order model can be used to describe the adsorption kinetics. The resultant isotherm data are well fitted by the Temkin model, implying that the dyes adsorption on the \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers is a multilayer adsorption combined with some degrees of chemical interactions. Considering the simple synthesis process, high adsorption and unique magnetic property, these mesoporous, magnetic, nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers can be used as a highly efficient, fast, and convenient adsorbent for dyes removal.HighlightsThe magnetic mesoporous Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were synthesized.Adsorption kinetics and adsorption isotherms were investigated.The separation, regeneration, and adsorption efficiency were enhanced.FigureThe novel mesoporous, magnetic, nanocomposite-activated alumina (\u03b3-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfiber adsorbents can be used as an efficient, fast, and convenient tool for dyes removal from wastewater.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11270-013-1819-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7174762", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6992964", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1320065", 
        "issn": [
          "0049-6979", 
          "1573-2932"
        ], 
        "name": "Water, Air, & Soil Pollution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "225"
      }
    ], 
    "keywords": [
      "specific surface area", 
      "nanocomposites \u03b3", 
      "high specific surface area", 
      "adsorption kinetics", 
      "surface area", 
      "unique magnetic properties", 
      "dye removal", 
      "methyl blue dye", 
      "simple synthesis process", 
      "high aspect ratio", 
      "separable adsorbent", 
      "magnetic properties", 
      "sol\u2013gel process", 
      "uniform diameter", 
      "adsorption isotherms", 
      "m2/", 
      "dye adsorption", 
      "synthesis process", 
      "saturation magnetization", 
      "Al2O3 mass fractions", 
      "convenient adsorbent", 
      "adsorption efficiency", 
      "microfibers", 
      "high adsorption", 
      "calcination temperature", 
      "efficient removal", 
      "Congo red", 
      "Al2O3 particles", 
      "multilayer adsorption", 
      "blue dye", 
      "adsorbent", 
      "adsorption behavior", 
      "adsorbent dosage", 
      "calcination conditions", 
      "Temkin models", 
      "adsorption", 
      "aspect ratio", 
      "solution pH", 
      "order model", 
      "aqueous solution", 
      "mass fraction", 
      "isotherm data", 
      "dye", 
      "nanocomposites", 
      "Al2O3 content", 
      "chemical interaction", 
      "alumina", 
      "isotherms", 
      "calcination", 
      "regeneration", 
      "properties", 
      "removal", 
      "wastewater", 
      "convenient tool", 
      "kinetics", 
      "efficiency", 
      "precursors", 
      "particles", 
      "adsorbates", 
      "magnetization", 
      "diameter", 
      "temperature", 
      "process", 
      "AM2", 
      "pH", 
      "model", 
      "red", 
      "separation", 
      "solution", 
      "area", 
      "behavior", 
      "conditions", 
      "ratio", 
      "fraction", 
      "content", 
      "interaction", 
      "effect", 
      "tool", 
      "dosage", 
      "degree", 
      "data"
    ], 
    "name": "Efficient Removal of Dyes from Aqueous Solution by Mesoporous Nanocomposite Al2O3/Ni0.5Zn0.5Fe2O4 Microfibers", 
    "pagination": "1819", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051584689"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11270-013-1819-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11270-013-1819-3", 
      "https://app.dimensions.ai/details/publication/pub.1051584689"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11270-013-1819-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      22 PREDICATES      111 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11270-013-1819-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0904
5 schema:author N807acd32773d4f91a1a37cb994fcc2ac
6 schema:citation sg:pub.10.1007/s10971-012-2755-1
7 sg:pub.10.1007/s11270-012-1286-2
8 sg:pub.10.1007/s12274-011-0111-3
9 schema:datePublished 2013-12-11
10 schema:datePublishedReg 2013-12-11
11 schema:description A novel mesoporous, nanocomposite, magnetically separable adsorbent, namely activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfibers have been successfully prepared by the sol–gel process. These nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers are formed after calcination of the precursor at 450 °C for 3 h, and characterized with high aspect ratios and uniform diameters of 1–10 μm. In the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers, the spherical γ-Al2O3 particles are homogeneously embedded on the microfiber. Their specific surface areas and magnetic properties are significantly influenced by the γ-Al2O3 content and calcination conditions. With the designed γ-Al2O3 mass fraction of 0.2 and the calcination temperature of 550 °C, the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers possess a high specific surface area of 118.3 m2/g and saturation magnetization (Ms) of 20.4 Am2 kg−1, respectively. The adsorption behaviors of the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were examined using the Congo red and methyl blue dyes as the adsorbate. The adsorption kinetics, effects of the adsorbent dosage and solution pH, adsorption isotherms, and regeneration of the microfiber adsorbents were investigated. The pseudo-second-order model can be used to describe the adsorption kinetics. The resultant isotherm data are well fitted by the Temkin model, implying that the dyes adsorption on the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers is a multilayer adsorption combined with some degrees of chemical interactions. Considering the simple synthesis process, high adsorption and unique magnetic property, these mesoporous, magnetic, nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers can be used as a highly efficient, fast, and convenient adsorbent for dyes removal.HighlightsThe magnetic mesoporous Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were synthesized.Adsorption kinetics and adsorption isotherms were investigated.The separation, regeneration, and adsorption efficiency were enhanced.FigureThe novel mesoporous, magnetic, nanocomposite-activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfiber adsorbents can be used as an efficient, fast, and convenient tool for dyes removal from wastewater.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N40f06c21539947c5a6652a2cb331572a
16 Nf846b1938941446aad322018aa3f330e
17 sg:journal.1320065
18 schema:keywords AM2
19 Al2O3 content
20 Al2O3 mass fractions
21 Al2O3 particles
22 Congo red
23 Temkin models
24 adsorbates
25 adsorbent
26 adsorbent dosage
27 adsorption
28 adsorption behavior
29 adsorption efficiency
30 adsorption isotherms
31 adsorption kinetics
32 alumina
33 aqueous solution
34 area
35 aspect ratio
36 behavior
37 blue dye
38 calcination
39 calcination conditions
40 calcination temperature
41 chemical interaction
42 conditions
43 content
44 convenient adsorbent
45 convenient tool
46 data
47 degree
48 diameter
49 dosage
50 dye
51 dye adsorption
52 dye removal
53 effect
54 efficiency
55 efficient removal
56 fraction
57 high adsorption
58 high aspect ratio
59 high specific surface area
60 interaction
61 isotherm data
62 isotherms
63 kinetics
64 m2/
65 magnetic properties
66 magnetization
67 mass fraction
68 methyl blue dye
69 microfibers
70 model
71 multilayer adsorption
72 nanocomposites
73 nanocomposites γ
74 order model
75 pH
76 particles
77 precursors
78 process
79 properties
80 ratio
81 red
82 regeneration
83 removal
84 saturation magnetization
85 separable adsorbent
86 separation
87 simple synthesis process
88 solution
89 solution pH
90 sol–gel process
91 specific surface area
92 surface area
93 synthesis process
94 temperature
95 tool
96 uniform diameter
97 unique magnetic properties
98 wastewater
99 schema:name Efficient Removal of Dyes from Aqueous Solution by Mesoporous Nanocomposite Al2O3/Ni0.5Zn0.5Fe2O4 Microfibers
100 schema:pagination 1819
101 schema:productId N97408463b2f54030bb7a4db13291714b
102 Nedfef51d7b9542f2aa28432f9d382060
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051584689
104 https://doi.org/10.1007/s11270-013-1819-3
105 schema:sdDatePublished 2022-05-20T07:28
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher Na3c279bd19ad4415a7d5ffb25f82d76d
108 schema:url https://doi.org/10.1007/s11270-013-1819-3
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N20b9d8dfd5484c05b76b3a4893ea9119 rdf:first sg:person.01162236364.13
113 rdf:rest N9a624e9181b24a528eb0274939be1b38
114 N40f06c21539947c5a6652a2cb331572a schema:volumeNumber 225
115 rdf:type schema:PublicationVolume
116 N7c5c76b8c36d4feaaddf9c684fdabb17 rdf:first sg:person.016451743257.41
117 rdf:rest Nc16c768185ab4f8ab1f63c21f94df401
118 N807acd32773d4f91a1a37cb994fcc2ac rdf:first sg:person.014241762757.77
119 rdf:rest Na4140deef8b44d4aabf3e087bf600d80
120 N97408463b2f54030bb7a4db13291714b schema:name dimensions_id
121 schema:value pub.1051584689
122 rdf:type schema:PropertyValue
123 N9a624e9181b24a528eb0274939be1b38 rdf:first sg:person.014115052743.12
124 rdf:rest N7c5c76b8c36d4feaaddf9c684fdabb17
125 Na3c279bd19ad4415a7d5ffb25f82d76d schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Na4140deef8b44d4aabf3e087bf600d80 rdf:first sg:person.016650620457.49
128 rdf:rest N20b9d8dfd5484c05b76b3a4893ea9119
129 Nc16c768185ab4f8ab1f63c21f94df401 rdf:first sg:person.0601655670.06
130 rdf:rest rdf:nil
131 Nedfef51d7b9542f2aa28432f9d382060 schema:name doi
132 schema:value 10.1007/s11270-013-1819-3
133 rdf:type schema:PropertyValue
134 Nf846b1938941446aad322018aa3f330e schema:issueNumber 1
135 rdf:type schema:PublicationIssue
136 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
137 schema:name Chemical Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
140 schema:name Physical Chemistry (incl. Structural)
141 rdf:type schema:DefinedTerm
142 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
143 schema:name Engineering
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
146 schema:name Chemical Engineering
147 rdf:type schema:DefinedTerm
148 sg:grant.6992964 http://pending.schema.org/fundedItem sg:pub.10.1007/s11270-013-1819-3
149 rdf:type schema:MonetaryGrant
150 sg:grant.7174762 http://pending.schema.org/fundedItem sg:pub.10.1007/s11270-013-1819-3
151 rdf:type schema:MonetaryGrant
152 sg:journal.1320065 schema:issn 0049-6979
153 1573-2932
154 schema:name Water, Air, & Soil Pollution
155 schema:publisher Springer Nature
156 rdf:type schema:Periodical
157 sg:person.01162236364.13 schema:affiliation grid-institutes:grid.440785.a
158 schema:familyName Jing
159 schema:givenName Maoxiang
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13
161 rdf:type schema:Person
162 sg:person.014115052743.12 schema:affiliation grid-institutes:grid.440785.a
163 schema:familyName Liu
164 schema:givenName Ruijiang
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115052743.12
166 rdf:type schema:Person
167 sg:person.014241762757.77 schema:affiliation grid-institutes:grid.440785.a
168 schema:familyName Yang
169 schema:givenName Xinchun
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014241762757.77
171 rdf:type schema:Person
172 sg:person.016451743257.41 schema:affiliation grid-institutes:grid.440785.a
173 schema:familyName Jin
174 schema:givenName Lina
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016451743257.41
176 rdf:type schema:Person
177 sg:person.016650620457.49 schema:affiliation grid-institutes:grid.440785.a
178 schema:familyName Wang
179 schema:givenName Zhou
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650620457.49
181 rdf:type schema:Person
182 sg:person.0601655670.06 schema:affiliation grid-institutes:grid.440785.a
183 schema:familyName Shen
184 schema:givenName Xiangqian
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06
186 rdf:type schema:Person
187 sg:pub.10.1007/s10971-012-2755-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021941744
188 https://doi.org/10.1007/s10971-012-2755-1
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s11270-012-1286-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003574914
191 https://doi.org/10.1007/s11270-012-1286-2
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s12274-011-0111-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031250878
194 https://doi.org/10.1007/s12274-011-0111-3
195 rdf:type schema:CreativeWork
196 grid-institutes:grid.440785.a schema:alternateName Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China
197 School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
198 schema:name Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China
199 School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...