Ontology type: schema:ScholarlyArticle
2013-12-11
AUTHORSXinchun Yang, Zhou Wang, Maoxiang Jing, Ruijiang Liu, Lina Jin, Xiangqian Shen
ABSTRACTA novel mesoporous, nanocomposite, magnetically separable adsorbent, namely activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfibers have been successfully prepared by the sol–gel process. These nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers are formed after calcination of the precursor at 450 °C for 3 h, and characterized with high aspect ratios and uniform diameters of 1–10 μm. In the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers, the spherical γ-Al2O3 particles are homogeneously embedded on the microfiber. Their specific surface areas and magnetic properties are significantly influenced by the γ-Al2O3 content and calcination conditions. With the designed γ-Al2O3 mass fraction of 0.2 and the calcination temperature of 550 °C, the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers possess a high specific surface area of 118.3 m2/g and saturation magnetization (Ms) of 20.4 Am2 kg−1, respectively. The adsorption behaviors of the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were examined using the Congo red and methyl blue dyes as the adsorbate. The adsorption kinetics, effects of the adsorbent dosage and solution pH, adsorption isotherms, and regeneration of the microfiber adsorbents were investigated. The pseudo-second-order model can be used to describe the adsorption kinetics. The resultant isotherm data are well fitted by the Temkin model, implying that the dyes adsorption on the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers is a multilayer adsorption combined with some degrees of chemical interactions. Considering the simple synthesis process, high adsorption and unique magnetic property, these mesoporous, magnetic, nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers can be used as a highly efficient, fast, and convenient adsorbent for dyes removal.HighlightsThe magnetic mesoporous Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were synthesized.Adsorption kinetics and adsorption isotherms were investigated.The separation, regeneration, and adsorption efficiency were enhanced.FigureThe novel mesoporous, magnetic, nanocomposite-activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfiber adsorbents can be used as an efficient, fast, and convenient tool for dyes removal from wastewater. More... »
PAGES1819
http://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3
DOIhttp://dx.doi.org/10.1007/s11270-013-1819-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1051584689
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Xinchun",
"id": "sg:person.014241762757.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014241762757.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Zhou",
"id": "sg:person.016650620457.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650620457.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Jing",
"givenName": "Maoxiang",
"id": "sg:person.01162236364.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China",
"School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Ruijiang",
"id": "sg:person.014115052743.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115052743.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Jin",
"givenName": "Lina",
"id": "sg:person.016451743257.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016451743257.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Shen",
"givenName": "Xiangqian",
"id": "sg:person.0601655670.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s12274-011-0111-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031250878",
"https://doi.org/10.1007/s12274-011-0111-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10971-012-2755-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021941744",
"https://doi.org/10.1007/s10971-012-2755-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11270-012-1286-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003574914",
"https://doi.org/10.1007/s11270-012-1286-2"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-12-11",
"datePublishedReg": "2013-12-11",
"description": "A novel mesoporous, nanocomposite, magnetically separable adsorbent, namely activated alumina (\u03b3-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfibers have been successfully prepared by the sol\u2013gel process. These nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers are formed after calcination of the precursor at 450\u00a0\u00b0C for 3\u00a0h, and characterized with high aspect ratios and uniform diameters of 1\u201310\u00a0\u03bcm. In the nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers, the spherical \u03b3-Al2O3 particles are homogeneously embedded on the microfiber. Their specific surface areas and magnetic properties are significantly influenced by the \u03b3-Al2O3 content and calcination conditions. With the designed \u03b3-Al2O3 mass fraction of 0.2 and the calcination temperature of 550\u00a0\u00b0C, the \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers possess a high specific surface area of 118.3\u00a0m2/g and saturation magnetization (Ms) of 20.4\u00a0Am2\u00a0kg\u22121, respectively. The adsorption behaviors of the nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were examined using the Congo red and methyl blue dyes as the adsorbate. The adsorption kinetics, effects of the adsorbent dosage and solution pH, adsorption isotherms, and regeneration of the microfiber adsorbents were investigated. The pseudo-second-order model can be used to describe the adsorption kinetics. The resultant isotherm data are well fitted by the Temkin model, implying that the dyes adsorption on the \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers is a multilayer adsorption combined with some degrees of chemical interactions. Considering the simple synthesis process, high adsorption and unique magnetic property, these mesoporous, magnetic, nanocomposite \u03b3-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers can be used as a highly efficient, fast, and convenient adsorbent for dyes removal.HighlightsThe magnetic mesoporous Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were synthesized.Adsorption kinetics and adsorption isotherms were investigated.The separation, regeneration, and adsorption efficiency were enhanced.FigureThe novel mesoporous, magnetic, nanocomposite-activated alumina (\u03b3-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfiber adsorbents can be used as an efficient, fast, and convenient tool for dyes removal from wastewater.",
"genre": "article",
"id": "sg:pub.10.1007/s11270-013-1819-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7174762",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6992964",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1320065",
"issn": [
"0049-6979",
"1573-2932"
],
"name": "Water, Air, & Soil Pollution",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "225"
}
],
"keywords": [
"specific surface area",
"nanocomposites \u03b3",
"high specific surface area",
"adsorption kinetics",
"surface area",
"unique magnetic properties",
"dye removal",
"methyl blue dye",
"simple synthesis process",
"high aspect ratio",
"separable adsorbent",
"magnetic properties",
"sol\u2013gel process",
"uniform diameter",
"adsorption isotherms",
"m2/",
"dye adsorption",
"synthesis process",
"saturation magnetization",
"Al2O3 mass fractions",
"convenient adsorbent",
"adsorption efficiency",
"microfibers",
"high adsorption",
"calcination temperature",
"efficient removal",
"Congo red",
"Al2O3 particles",
"multilayer adsorption",
"blue dye",
"adsorbent",
"adsorption behavior",
"adsorbent dosage",
"calcination conditions",
"Temkin models",
"adsorption",
"aspect ratio",
"solution pH",
"order model",
"aqueous solution",
"mass fraction",
"isotherm data",
"dye",
"nanocomposites",
"Al2O3 content",
"chemical interaction",
"alumina",
"isotherms",
"calcination",
"regeneration",
"properties",
"removal",
"wastewater",
"convenient tool",
"kinetics",
"efficiency",
"precursors",
"particles",
"adsorbates",
"magnetization",
"diameter",
"temperature",
"process",
"AM2",
"pH",
"model",
"red",
"separation",
"solution",
"area",
"behavior",
"conditions",
"ratio",
"fraction",
"content",
"interaction",
"effect",
"tool",
"dosage",
"degree",
"data"
],
"name": "Efficient Removal of Dyes from Aqueous Solution by Mesoporous Nanocomposite Al2O3/Ni0.5Zn0.5Fe2O4 Microfibers",
"pagination": "1819",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1051584689"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11270-013-1819-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11270-013-1819-3",
"https://app.dimensions.ai/details/publication/pub.1051584689"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_595.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11270-013-1819-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11270-013-1819-3'
This table displays all metadata directly associated to this object as RDF triples.
200 TRIPLES
22 PREDICATES
111 URIs
98 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11270-013-1819-3 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0904 |
5 | ″ | schema:author | N807acd32773d4f91a1a37cb994fcc2ac |
6 | ″ | schema:citation | sg:pub.10.1007/s10971-012-2755-1 |
7 | ″ | ″ | sg:pub.10.1007/s11270-012-1286-2 |
8 | ″ | ″ | sg:pub.10.1007/s12274-011-0111-3 |
9 | ″ | schema:datePublished | 2013-12-11 |
10 | ″ | schema:datePublishedReg | 2013-12-11 |
11 | ″ | schema:description | A novel mesoporous, nanocomposite, magnetically separable adsorbent, namely activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfibers have been successfully prepared by the sol–gel process. These nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers are formed after calcination of the precursor at 450 °C for 3 h, and characterized with high aspect ratios and uniform diameters of 1–10 μm. In the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers, the spherical γ-Al2O3 particles are homogeneously embedded on the microfiber. Their specific surface areas and magnetic properties are significantly influenced by the γ-Al2O3 content and calcination conditions. With the designed γ-Al2O3 mass fraction of 0.2 and the calcination temperature of 550 °C, the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers possess a high specific surface area of 118.3 m2/g and saturation magnetization (Ms) of 20.4 Am2 kg−1, respectively. The adsorption behaviors of the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were examined using the Congo red and methyl blue dyes as the adsorbate. The adsorption kinetics, effects of the adsorbent dosage and solution pH, adsorption isotherms, and regeneration of the microfiber adsorbents were investigated. The pseudo-second-order model can be used to describe the adsorption kinetics. The resultant isotherm data are well fitted by the Temkin model, implying that the dyes adsorption on the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers is a multilayer adsorption combined with some degrees of chemical interactions. Considering the simple synthesis process, high adsorption and unique magnetic property, these mesoporous, magnetic, nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers can be used as a highly efficient, fast, and convenient adsorbent for dyes removal.HighlightsThe magnetic mesoporous Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were synthesized.Adsorption kinetics and adsorption isotherms were investigated.The separation, regeneration, and adsorption efficiency were enhanced.FigureThe novel mesoporous, magnetic, nanocomposite-activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfiber adsorbents can be used as an efficient, fast, and convenient tool for dyes removal from wastewater. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N40f06c21539947c5a6652a2cb331572a |
16 | ″ | ″ | Nf846b1938941446aad322018aa3f330e |
17 | ″ | ″ | sg:journal.1320065 |
18 | ″ | schema:keywords | AM2 |
19 | ″ | ″ | Al2O3 content |
20 | ″ | ″ | Al2O3 mass fractions |
21 | ″ | ″ | Al2O3 particles |
22 | ″ | ″ | Congo red |
23 | ″ | ″ | Temkin models |
24 | ″ | ″ | adsorbates |
25 | ″ | ″ | adsorbent |
26 | ″ | ″ | adsorbent dosage |
27 | ″ | ″ | adsorption |
28 | ″ | ″ | adsorption behavior |
29 | ″ | ″ | adsorption efficiency |
30 | ″ | ″ | adsorption isotherms |
31 | ″ | ″ | adsorption kinetics |
32 | ″ | ″ | alumina |
33 | ″ | ″ | aqueous solution |
34 | ″ | ″ | area |
35 | ″ | ″ | aspect ratio |
36 | ″ | ″ | behavior |
37 | ″ | ″ | blue dye |
38 | ″ | ″ | calcination |
39 | ″ | ″ | calcination conditions |
40 | ″ | ″ | calcination temperature |
41 | ″ | ″ | chemical interaction |
42 | ″ | ″ | conditions |
43 | ″ | ″ | content |
44 | ″ | ″ | convenient adsorbent |
45 | ″ | ″ | convenient tool |
46 | ″ | ″ | data |
47 | ″ | ″ | degree |
48 | ″ | ″ | diameter |
49 | ″ | ″ | dosage |
50 | ″ | ″ | dye |
51 | ″ | ″ | dye adsorption |
52 | ″ | ″ | dye removal |
53 | ″ | ″ | effect |
54 | ″ | ″ | efficiency |
55 | ″ | ″ | efficient removal |
56 | ″ | ″ | fraction |
57 | ″ | ″ | high adsorption |
58 | ″ | ″ | high aspect ratio |
59 | ″ | ″ | high specific surface area |
60 | ″ | ″ | interaction |
61 | ″ | ″ | isotherm data |
62 | ″ | ″ | isotherms |
63 | ″ | ″ | kinetics |
64 | ″ | ″ | m2/ |
65 | ″ | ″ | magnetic properties |
66 | ″ | ″ | magnetization |
67 | ″ | ″ | mass fraction |
68 | ″ | ″ | methyl blue dye |
69 | ″ | ″ | microfibers |
70 | ″ | ″ | model |
71 | ″ | ″ | multilayer adsorption |
72 | ″ | ″ | nanocomposites |
73 | ″ | ″ | nanocomposites γ |
74 | ″ | ″ | order model |
75 | ″ | ″ | pH |
76 | ″ | ″ | particles |
77 | ″ | ″ | precursors |
78 | ″ | ″ | process |
79 | ″ | ″ | properties |
80 | ″ | ″ | ratio |
81 | ″ | ″ | red |
82 | ″ | ″ | regeneration |
83 | ″ | ″ | removal |
84 | ″ | ″ | saturation magnetization |
85 | ″ | ″ | separable adsorbent |
86 | ″ | ″ | separation |
87 | ″ | ″ | simple synthesis process |
88 | ″ | ″ | solution |
89 | ″ | ″ | solution pH |
90 | ″ | ″ | sol–gel process |
91 | ″ | ″ | specific surface area |
92 | ″ | ″ | surface area |
93 | ″ | ″ | synthesis process |
94 | ″ | ″ | temperature |
95 | ″ | ″ | tool |
96 | ″ | ″ | uniform diameter |
97 | ″ | ″ | unique magnetic properties |
98 | ″ | ″ | wastewater |
99 | ″ | schema:name | Efficient Removal of Dyes from Aqueous Solution by Mesoporous Nanocomposite Al2O3/Ni0.5Zn0.5Fe2O4 Microfibers |
100 | ″ | schema:pagination | 1819 |
101 | ″ | schema:productId | N97408463b2f54030bb7a4db13291714b |
102 | ″ | ″ | Nedfef51d7b9542f2aa28432f9d382060 |
103 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051584689 |
104 | ″ | ″ | https://doi.org/10.1007/s11270-013-1819-3 |
105 | ″ | schema:sdDatePublished | 2022-05-20T07:28 |
106 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
107 | ″ | schema:sdPublisher | Na3c279bd19ad4415a7d5ffb25f82d76d |
108 | ″ | schema:url | https://doi.org/10.1007/s11270-013-1819-3 |
109 | ″ | sgo:license | sg:explorer/license/ |
110 | ″ | sgo:sdDataset | articles |
111 | ″ | rdf:type | schema:ScholarlyArticle |
112 | N20b9d8dfd5484c05b76b3a4893ea9119 | rdf:first | sg:person.01162236364.13 |
113 | ″ | rdf:rest | N9a624e9181b24a528eb0274939be1b38 |
114 | N40f06c21539947c5a6652a2cb331572a | schema:volumeNumber | 225 |
115 | ″ | rdf:type | schema:PublicationVolume |
116 | N7c5c76b8c36d4feaaddf9c684fdabb17 | rdf:first | sg:person.016451743257.41 |
117 | ″ | rdf:rest | Nc16c768185ab4f8ab1f63c21f94df401 |
118 | N807acd32773d4f91a1a37cb994fcc2ac | rdf:first | sg:person.014241762757.77 |
119 | ″ | rdf:rest | Na4140deef8b44d4aabf3e087bf600d80 |
120 | N97408463b2f54030bb7a4db13291714b | schema:name | dimensions_id |
121 | ″ | schema:value | pub.1051584689 |
122 | ″ | rdf:type | schema:PropertyValue |
123 | N9a624e9181b24a528eb0274939be1b38 | rdf:first | sg:person.014115052743.12 |
124 | ″ | rdf:rest | N7c5c76b8c36d4feaaddf9c684fdabb17 |
125 | Na3c279bd19ad4415a7d5ffb25f82d76d | schema:name | Springer Nature - SN SciGraph project |
126 | ″ | rdf:type | schema:Organization |
127 | Na4140deef8b44d4aabf3e087bf600d80 | rdf:first | sg:person.016650620457.49 |
128 | ″ | rdf:rest | N20b9d8dfd5484c05b76b3a4893ea9119 |
129 | Nc16c768185ab4f8ab1f63c21f94df401 | rdf:first | sg:person.0601655670.06 |
130 | ″ | rdf:rest | rdf:nil |
131 | Nedfef51d7b9542f2aa28432f9d382060 | schema:name | doi |
132 | ″ | schema:value | 10.1007/s11270-013-1819-3 |
133 | ″ | rdf:type | schema:PropertyValue |
134 | Nf846b1938941446aad322018aa3f330e | schema:issueNumber | 1 |
135 | ″ | rdf:type | schema:PublicationIssue |
136 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
137 | ″ | schema:name | Chemical Sciences |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
140 | ″ | schema:name | Physical Chemistry (incl. Structural) |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
143 | ″ | schema:name | Engineering |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Chemical Engineering |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | sg:grant.6992964 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11270-013-1819-3 |
149 | ″ | rdf:type | schema:MonetaryGrant |
150 | sg:grant.7174762 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11270-013-1819-3 |
151 | ″ | rdf:type | schema:MonetaryGrant |
152 | sg:journal.1320065 | schema:issn | 0049-6979 |
153 | ″ | ″ | 1573-2932 |
154 | ″ | schema:name | Water, Air, & Soil Pollution |
155 | ″ | schema:publisher | Springer Nature |
156 | ″ | rdf:type | schema:Periodical |
157 | sg:person.01162236364.13 | schema:affiliation | grid-institutes:grid.440785.a |
158 | ″ | schema:familyName | Jing |
159 | ″ | schema:givenName | Maoxiang |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13 |
161 | ″ | rdf:type | schema:Person |
162 | sg:person.014115052743.12 | schema:affiliation | grid-institutes:grid.440785.a |
163 | ″ | schema:familyName | Liu |
164 | ″ | schema:givenName | Ruijiang |
165 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115052743.12 |
166 | ″ | rdf:type | schema:Person |
167 | sg:person.014241762757.77 | schema:affiliation | grid-institutes:grid.440785.a |
168 | ″ | schema:familyName | Yang |
169 | ″ | schema:givenName | Xinchun |
170 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014241762757.77 |
171 | ″ | rdf:type | schema:Person |
172 | sg:person.016451743257.41 | schema:affiliation | grid-institutes:grid.440785.a |
173 | ″ | schema:familyName | Jin |
174 | ″ | schema:givenName | Lina |
175 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016451743257.41 |
176 | ″ | rdf:type | schema:Person |
177 | sg:person.016650620457.49 | schema:affiliation | grid-institutes:grid.440785.a |
178 | ″ | schema:familyName | Wang |
179 | ″ | schema:givenName | Zhou |
180 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650620457.49 |
181 | ″ | rdf:type | schema:Person |
182 | sg:person.0601655670.06 | schema:affiliation | grid-institutes:grid.440785.a |
183 | ″ | schema:familyName | Shen |
184 | ″ | schema:givenName | Xiangqian |
185 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06 |
186 | ″ | rdf:type | schema:Person |
187 | sg:pub.10.1007/s10971-012-2755-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021941744 |
188 | ″ | ″ | https://doi.org/10.1007/s10971-012-2755-1 |
189 | ″ | rdf:type | schema:CreativeWork |
190 | sg:pub.10.1007/s11270-012-1286-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003574914 |
191 | ″ | ″ | https://doi.org/10.1007/s11270-012-1286-2 |
192 | ″ | rdf:type | schema:CreativeWork |
193 | sg:pub.10.1007/s12274-011-0111-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031250878 |
194 | ″ | ″ | https://doi.org/10.1007/s12274-011-0111-3 |
195 | ″ | rdf:type | schema:CreativeWork |
196 | grid-institutes:grid.440785.a | schema:alternateName | Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China |
197 | ″ | ″ | School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China |
198 | ″ | schema:name | Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China |
199 | ″ | ″ | School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China |
200 | ″ | rdf:type | schema:Organization |