Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

U. Surendran, B. Anagha, P. Raja, V. Kumar, K. Rajan, M. Jayakumar

ABSTRACT

The study aims at evaluating the various drought indices for the humid, semi-arid and arid regions of India using conventional indices, such as rainfall anomaly index, departure analysis of rainfall and other indices such as Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) that were analyzed using the DrinC software. In SPI, arid region has seven drought years, whereas humid and semi-arid regions have four. In case of RDI, the humid and semi-arid regions have 11 drought years, whereas arid regions have 10 years. The difference in SPI and RDI was due to the fact that RDI considered potential evapotranspiration, and hence, correlation with plants would be better in case of RDI. Humid region showed a decreasing trend in initial value of RDI during the drought as compared to semiarid and arid regions and indicated possible climate change impact in these regions. Among all the indices, RDI was considered as an effective indicator because of implicit severity and high prediction matches with the actual drought years. SPI and RDI were found to be well correlated with respect to 3 months rainfall data and SPI values led to prediction of annual RDI. The results of our study established that this correlation could be used for developing disaster management plan well in advance to combat the drought consequences. More... »

PAGES

1521-1540

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11269-019-2188-5

DOI

http://dx.doi.org/10.1007/s11269-019-2188-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111639135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Water Resources Development and Management", 
          "id": "https://www.grid.ac/institutes/grid.464826.a", 
          "name": [
            "Centre for Water Resources Development and Management, Calicut, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surendran", 
        "givenName": "U.", 
        "id": "sg:person.012026707301.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012026707301.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Water Resources Development and Management", 
          "id": "https://www.grid.ac/institutes/grid.464826.a", 
          "name": [
            "Centre for Water Resources Development and Management, Calicut, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anagha", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Soil and Water Conservation", 
          "id": "https://www.grid.ac/institutes/grid.464537.7", 
          "name": [
            "ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Udhagamandalam, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raja", 
        "givenName": "P.", 
        "id": "sg:person.0651545151.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651545151.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tamil Nadu Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.412906.8", 
          "name": [
            "Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "V.", 
        "id": "sg:person.0717660351.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717660351.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Soil and Water Conservation", 
          "id": "https://www.grid.ac/institutes/grid.464537.7", 
          "name": [
            "ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Udhagamandalam, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajan", 
        "givenName": "K.", 
        "id": "sg:person.07670062640.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670062640.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Regional Coffee Research station, Coffee Board, Thandikudi, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayakumar", 
        "givenName": "M.", 
        "id": "sg:person.010433746301.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010433746301.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/jhm-d-14-0064.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002109740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2016.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004685997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-014-0657-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006266711", 
          "https://doi.org/10.1007/s11269-014-0657-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2004.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006316465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaridenv.2012.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007803266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12145-014-0178-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008794824", 
          "https://doi.org/10.1007/s12145-014-0178-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-013-0566-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014637390", 
          "https://doi.org/10.1007/s11069-013-0566-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015484875", 
          "https://doi.org/10.1038/nature11575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169608949106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016781465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019918647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021001021", 
          "https://doi.org/10.1038/nclimate2657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/s00-080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021805360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-010-9665-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025182150", 
          "https://doi.org/10.1007/s11269-010-9665-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hessd-9-12145-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025531815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026192654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-016-1380-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026460484", 
          "https://doi.org/10.1007/s11269-016-1380-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-016-1380-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026460484", 
          "https://doi.org/10.1007/s11269-016-1380-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jd015541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029323459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030400738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-008-9282-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030827824", 
          "https://doi.org/10.1007/s11269-008-9282-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0340-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031386741", 
          "https://doi.org/10.1007/s00382-007-0340-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0340-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031386741", 
          "https://doi.org/10.1007/s00382-007-0340-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-006-9105-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032232046", 
          "https://doi.org/10.1007/s11269-006-9105-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1999)080<0429:mtduts>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033944951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:warm.0000015410.47014.a4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036669674", 
          "https://doi.org/10.1023/b:warm.0000015410.47014.a4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/wsa.v29i4.5057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039096785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/wsa.v29i4.5057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039096785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-008-9305-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041282808", 
          "https://doi.org/10.1007/s11269-008-9305-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043579076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-013-0471-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050412076", 
          "https://doi.org/10.1007/s11269-013-0471-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010bams3103.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053313362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wcc.2014.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069136475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18520/cs/v112/i01/76-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074246345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-017-1687-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085187435", 
          "https://doi.org/10.1007/s11269-017-1687-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-017-1687-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085187435", 
          "https://doi.org/10.1007/s11269-017-1687-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3804-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090742678", 
          "https://doi.org/10.1007/s00382-017-3804-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3804-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090742678", 
          "https://doi.org/10.1007/s00382-017-3804-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-14283-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092297816", 
          "https://doi.org/10.1038/s41598-017-14283-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-017-1898-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100197828", 
          "https://doi.org/10.1007/s11269-017-1898-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The study aims at evaluating the various drought indices for the humid, semi-arid and arid regions of India using conventional indices, such as rainfall anomaly index, departure analysis of rainfall and other indices such as Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) that were analyzed using the DrinC software. In SPI, arid region has seven drought years, whereas humid and semi-arid regions have four. In case of RDI, the humid and semi-arid regions have 11 drought years, whereas arid regions have 10 years. The difference in SPI and RDI was due to the fact that RDI considered potential evapotranspiration, and hence, correlation with plants would be better in case of RDI. Humid region showed a decreasing trend in initial value of RDI during the drought as compared to semiarid and arid regions and indicated possible climate change impact in these regions. Among all the indices, RDI was considered as an effective indicator because of implicit severity and high prediction matches with the actual drought years. SPI and RDI were found to be well correlated with respect to 3 months rainfall data and SPI values led to prediction of annual RDI. The results of our study established that this correlation could be used for developing disaster management plan well in advance to combat the drought consequences.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11269-019-2188-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136873", 
        "issn": [
          "0920-4741", 
          "1573-1650"
        ], 
        "name": "Water Resources Management", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices", 
    "pagination": "1521-1540", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "34cf2db9ce3b93cf0471db20f1b59c2293f6fbe996cb6ccfdb5b55c73241bede"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11269-019-2188-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111639135"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11269-019-2188-5", 
      "https://app.dimensions.ai/details/publication/pub.1111639135"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45351_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11269-019-2188-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11269-019-2188-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11269-019-2188-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11269-019-2188-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11269-019-2188-5'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11269-019-2188-5 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N5376587856da4ea793e555363d242440
4 schema:citation sg:pub.10.1007/s00382-007-0340-z
5 sg:pub.10.1007/s00382-017-3804-9
6 sg:pub.10.1007/s11069-013-0566-5
7 sg:pub.10.1007/s11269-006-9105-4
8 sg:pub.10.1007/s11269-008-9282-4
9 sg:pub.10.1007/s11269-008-9305-1
10 sg:pub.10.1007/s11269-010-9665-1
11 sg:pub.10.1007/s11269-013-0471-4
12 sg:pub.10.1007/s11269-014-0657-4
13 sg:pub.10.1007/s11269-016-1380-0
14 sg:pub.10.1007/s11269-017-1687-5
15 sg:pub.10.1007/s11269-017-1898-9
16 sg:pub.10.1007/s12145-014-0178-y
17 sg:pub.10.1023/b:warm.0000015410.47014.a4
18 sg:pub.10.1038/nature11575
19 sg:pub.10.1038/nclimate2657
20 sg:pub.10.1038/s41598-017-14283-2
21 https://doi.org/10.1002/joc.872
22 https://doi.org/10.1002/joc.931
23 https://doi.org/10.1016/j.agwat.2013.10.004
24 https://doi.org/10.1016/j.agwat.2016.08.016
25 https://doi.org/10.1016/j.gloplacha.2004.06.001
26 https://doi.org/10.1016/j.jaridenv.2012.07.020
27 https://doi.org/10.1016/j.jhydrol.2010.07.012
28 https://doi.org/10.1029/2010jd015541
29 https://doi.org/10.1080/01431169608949106
30 https://doi.org/10.1175/1520-0477(1999)080<0429:mtduts>2.0.co;2
31 https://doi.org/10.1175/2010bams3103.1
32 https://doi.org/10.1175/jhm-d-14-0064.1
33 https://doi.org/10.18520/cs/v112/i01/76-86
34 https://doi.org/10.2166/wcc.2014.108
35 https://doi.org/10.4141/s00-080
36 https://doi.org/10.4314/wsa.v29i4.5057
37 https://doi.org/10.5194/hessd-9-12145-2012
38 schema:datePublished 2019-03
39 schema:datePublishedReg 2019-03-01
40 schema:description The study aims at evaluating the various drought indices for the humid, semi-arid and arid regions of India using conventional indices, such as rainfall anomaly index, departure analysis of rainfall and other indices such as Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) that were analyzed using the DrinC software. In SPI, arid region has seven drought years, whereas humid and semi-arid regions have four. In case of RDI, the humid and semi-arid regions have 11 drought years, whereas arid regions have 10 years. The difference in SPI and RDI was due to the fact that RDI considered potential evapotranspiration, and hence, correlation with plants would be better in case of RDI. Humid region showed a decreasing trend in initial value of RDI during the drought as compared to semiarid and arid regions and indicated possible climate change impact in these regions. Among all the indices, RDI was considered as an effective indicator because of implicit severity and high prediction matches with the actual drought years. SPI and RDI were found to be well correlated with respect to 3 months rainfall data and SPI values led to prediction of annual RDI. The results of our study established that this correlation could be used for developing disaster management plan well in advance to combat the drought consequences.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N690fcfeb2d554842b3e5956f4eb1088d
45 Ndf2b739890b8426f898b351387588ceb
46 sg:journal.1136873
47 schema:name Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices
48 schema:pagination 1521-1540
49 schema:productId N3801f7f955dd443e88f994c2c9715787
50 N69f712975b1148eebc75e3a29cd225f6
51 Ndbc6a1472fc54be8a5d539494204dac9
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111639135
53 https://doi.org/10.1007/s11269-019-2188-5
54 schema:sdDatePublished 2019-04-11T11:11
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N4b61c2096b694dcd97269eb6e9aa6797
57 schema:url https://link.springer.com/10.1007%2Fs11269-019-2188-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N3801f7f955dd443e88f994c2c9715787 schema:name doi
62 schema:value 10.1007/s11269-019-2188-5
63 rdf:type schema:PropertyValue
64 N4b61c2096b694dcd97269eb6e9aa6797 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N5376587856da4ea793e555363d242440 rdf:first sg:person.012026707301.89
67 rdf:rest N548f97f78ce2428f9360462b3733ca1a
68 N548f97f78ce2428f9360462b3733ca1a rdf:first N5795de4393b24fdf813c21f11395f899
69 rdf:rest Nbdfadb8f8815450abe9cdb9a83287bba
70 N564c9ebf11344d5dbec6b446cd023fd9 rdf:first sg:person.0717660351.56
71 rdf:rest Nb01c34d66c574eae9810a30fe2913ef2
72 N5795de4393b24fdf813c21f11395f899 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
73 schema:familyName Anagha
74 schema:givenName B.
75 rdf:type schema:Person
76 N629c58ccb97847508bd442320ffe8bf8 schema:name Regional Coffee Research station, Coffee Board, Thandikudi, Tamil Nadu, India
77 rdf:type schema:Organization
78 N690fcfeb2d554842b3e5956f4eb1088d schema:issueNumber 4
79 rdf:type schema:PublicationIssue
80 N69f712975b1148eebc75e3a29cd225f6 schema:name dimensions_id
81 schema:value pub.1111639135
82 rdf:type schema:PropertyValue
83 N6bed3d07eb18437e8c1274f644ea47bc rdf:first sg:person.010433746301.53
84 rdf:rest rdf:nil
85 Nb01c34d66c574eae9810a30fe2913ef2 rdf:first sg:person.07670062640.08
86 rdf:rest N6bed3d07eb18437e8c1274f644ea47bc
87 Nbdfadb8f8815450abe9cdb9a83287bba rdf:first sg:person.0651545151.54
88 rdf:rest N564c9ebf11344d5dbec6b446cd023fd9
89 Ndbc6a1472fc54be8a5d539494204dac9 schema:name readcube_id
90 schema:value 34cf2db9ce3b93cf0471db20f1b59c2293f6fbe996cb6ccfdb5b55c73241bede
91 rdf:type schema:PropertyValue
92 Ndf2b739890b8426f898b351387588ceb schema:volumeNumber 33
93 rdf:type schema:PublicationVolume
94 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
95 schema:name Earth Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Geography and Environmental Geoscience
99 rdf:type schema:DefinedTerm
100 sg:journal.1136873 schema:issn 0920-4741
101 1573-1650
102 schema:name Water Resources Management
103 rdf:type schema:Periodical
104 sg:person.010433746301.53 schema:affiliation N629c58ccb97847508bd442320ffe8bf8
105 schema:familyName Jayakumar
106 schema:givenName M.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010433746301.53
108 rdf:type schema:Person
109 sg:person.012026707301.89 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
110 schema:familyName Surendran
111 schema:givenName U.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012026707301.89
113 rdf:type schema:Person
114 sg:person.0651545151.54 schema:affiliation https://www.grid.ac/institutes/grid.464537.7
115 schema:familyName Raja
116 schema:givenName P.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651545151.54
118 rdf:type schema:Person
119 sg:person.0717660351.56 schema:affiliation https://www.grid.ac/institutes/grid.412906.8
120 schema:familyName Kumar
121 schema:givenName V.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717660351.56
123 rdf:type schema:Person
124 sg:person.07670062640.08 schema:affiliation https://www.grid.ac/institutes/grid.464537.7
125 schema:familyName Rajan
126 schema:givenName K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670062640.08
128 rdf:type schema:Person
129 sg:pub.10.1007/s00382-007-0340-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031386741
130 https://doi.org/10.1007/s00382-007-0340-z
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00382-017-3804-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090742678
133 https://doi.org/10.1007/s00382-017-3804-9
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11069-013-0566-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014637390
136 https://doi.org/10.1007/s11069-013-0566-5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11269-006-9105-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032232046
139 https://doi.org/10.1007/s11269-006-9105-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11269-008-9282-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030827824
142 https://doi.org/10.1007/s11269-008-9282-4
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11269-008-9305-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041282808
145 https://doi.org/10.1007/s11269-008-9305-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11269-010-9665-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025182150
148 https://doi.org/10.1007/s11269-010-9665-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11269-013-0471-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050412076
151 https://doi.org/10.1007/s11269-013-0471-4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11269-014-0657-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006266711
154 https://doi.org/10.1007/s11269-014-0657-4
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11269-016-1380-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026460484
157 https://doi.org/10.1007/s11269-016-1380-0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11269-017-1687-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085187435
160 https://doi.org/10.1007/s11269-017-1687-5
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11269-017-1898-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100197828
163 https://doi.org/10.1007/s11269-017-1898-9
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s12145-014-0178-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008794824
166 https://doi.org/10.1007/s12145-014-0178-y
167 rdf:type schema:CreativeWork
168 sg:pub.10.1023/b:warm.0000015410.47014.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036669674
169 https://doi.org/10.1023/b:warm.0000015410.47014.a4
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature11575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015484875
172 https://doi.org/10.1038/nature11575
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nclimate2657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021001021
175 https://doi.org/10.1038/nclimate2657
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/s41598-017-14283-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092297816
178 https://doi.org/10.1038/s41598-017-14283-2
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/joc.872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019918647
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/joc.931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043579076
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.agwat.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026192654
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.agwat.2016.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004685997
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.gloplacha.2004.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006316465
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jaridenv.2012.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007803266
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jhydrol.2010.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030400738
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1029/2010jd015541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029323459
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/01431169608949106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016781465
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/1520-0477(1999)080<0429:mtduts>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033944951
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1175/2010bams3103.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053313362
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1175/jhm-d-14-0064.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002109740
203 rdf:type schema:CreativeWork
204 https://doi.org/10.18520/cs/v112/i01/76-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074246345
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2166/wcc.2014.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069136475
207 rdf:type schema:CreativeWork
208 https://doi.org/10.4141/s00-080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021805360
209 rdf:type schema:CreativeWork
210 https://doi.org/10.4314/wsa.v29i4.5057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039096785
211 rdf:type schema:CreativeWork
212 https://doi.org/10.5194/hessd-9-12145-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025531815
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.412906.8 schema:alternateName Tamil Nadu Agricultural University
215 schema:name Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.464537.7 schema:alternateName Indian Institute of Soil and Water Conservation
218 schema:name ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Udhagamandalam, Tamil Nadu, India
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.464826.a schema:alternateName Centre for Water Resources Development and Management
221 schema:name Centre for Water Resources Development and Management, Calicut, Kerala, India
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...