Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

T. K. Drissia, V. Jothiprakash, A. B. Anitha

ABSTRACT

Regional flood frequency analysis has been carried out for estimating peak discharge at regional level over the Kerala State, India, along with at-site flood frequency analysis. For the study, the annual peak discharges of 43 gauging stations having length of data from 14 to 47 years spread over the Kerala State were used. Using L moments and L moment ratio, best fit distribution was identified among the five distributions; Generalised Extreme Value (GEV), Generalised Pareto Distribution (GPA), Generalised Logistic (GLO), Generalised Normal (LN3) and Pearson Type III (PE3) distribution for both at-site and regional flood frequency analysis. Chi-square test, ranking method using statistical indicators and L moment ratio diagram were used for identifying the best fit distribution for at-site flood frequency analysis. It was found that GPA was the best fit distribution for 27 stations, GLO for 14, LN3 for 1 station and GEV for 2 station. After discordancy test, five different homogeneous regions were identified through heterogeneity test to carry out the regional flood frequency analysis (RFFA). After identifying best-fit distributions for each zone, flood growth curves were derived by incorporating the catchment characteristics of the basins. The distribution that was best fit in case of at-site analysis for a gauging site is found to be entirely different than the best fit distribution resulted from RFFA. In RFFA, growth curves that provide the flood magnitude for various return periods can be used to estimate the flood magnitude and frequency at ungauged sites in each region of the Kerala State in India. More... »

PAGES

1-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11269-018-2162-7

DOI

http://dx.doi.org/10.1007/s11269-018-2162-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111269033


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Water Resources Development and Management", 
          "id": "https://www.grid.ac/institutes/grid.464826.a", 
          "name": [
            "Indian Institute of Technology Bombay, Mumbai, Maharashtra, India", 
            "Centre for Water Resources Development and Management, Kozhikode, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drissia", 
        "givenName": "T. K.", 
        "id": "sg:person.013672675032.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672675032.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Indian Institute of Technology Bombay, Mumbai, Maharashtra, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jothiprakash", 
        "givenName": "V.", 
        "id": "sg:person.012053740321.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053740321.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Water Resources Development and Management", 
          "id": "https://www.grid.ac/institutes/grid.464826.a", 
          "name": [
            "Centre for Water Resources Development and Management, Kozhikode, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anitha", 
        "givenName": "A. B.", 
        "id": "sg:person.015533010457.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015533010457.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1694(88)90188-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001134876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(88)90188-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001134876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-013-0325-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005793052", 
          "https://doi.org/10.1007/s11269-013-0325-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010604632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.10182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012282867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176343003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013887491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/92wr01980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017880306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-016-2703-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020934349", 
          "https://doi.org/10.1007/s11069-016-2703-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-016-2703-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020934349", 
          "https://doi.org/10.1007/s11069-016-2703-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024770124523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029936815", 
          "https://doi.org/10.1023/a:1024770124523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-016-2723-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032363188", 
          "https://doi.org/10.1007/s11069-016-2723-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-016-2723-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032363188", 
          "https://doi.org/10.1007/s11069-016-2723-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09715010.2016.1177739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032750839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011wr010782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035796897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-008-9378-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040701786", 
          "https://doi.org/10.1007/s11269-008-9378-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-016-0378-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044087891", 
          "https://doi.org/10.1007/s13201-016-0378-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-016-0378-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044087891", 
          "https://doi.org/10.1007/s13201-016-0378-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-016-0378-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044087891", 
          "https://doi.org/10.1007/s13201-016-0378-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2005)10:1(1)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-017-1739-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086032124", 
          "https://doi.org/10.1007/s11269-017-1739-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-017-1739-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086032124", 
          "https://doi.org/10.1007/s11269-017-1739-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511529443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098738555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-018-2677-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109759318", 
          "https://doi.org/10.1007/s00704-018-2677-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Regional flood frequency analysis has been carried out for estimating peak discharge at regional level over the Kerala State, India, along with at-site flood frequency analysis. For the study, the annual peak discharges of 43 gauging stations having length of data from 14 to 47 years spread over the Kerala State were used. Using L moments and L moment ratio, best fit distribution was identified among the five distributions; Generalised Extreme Value (GEV), Generalised Pareto Distribution (GPA), Generalised Logistic (GLO), Generalised Normal (LN3) and Pearson Type III (PE3) distribution for both at-site and regional flood frequency analysis. Chi-square test, ranking method using statistical indicators and L moment ratio diagram were used for identifying the best fit distribution for at-site flood frequency analysis. It was found that GPA was the best fit distribution for 27 stations, GLO for 14, LN3 for 1 station and GEV for 2 station. After discordancy test, five different homogeneous regions were identified through heterogeneity test to carry out the regional flood frequency analysis (RFFA). After identifying best-fit distributions for each zone, flood growth curves were derived by incorporating the catchment characteristics of the basins. The distribution that was best fit in case of at-site analysis for a gauging site is found to be entirely different than the best fit distribution resulted from RFFA. In RFFA, growth curves that provide the flood magnitude for various return periods can be used to estimate the flood magnitude and frequency at ungauged sites in each region of the Kerala State in India.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11269-018-2162-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136873", 
        "issn": [
          "0920-4741", 
          "1573-1650"
        ], 
        "name": "Water Resources Management", 
        "type": "Periodical"
      }
    ], 
    "name": "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e7fc756575868a8dfffd8cc5d05098c2109db437dd4d888d39b871d8cbec0f69"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11269-018-2162-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111269033"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11269-018-2162-7", 
      "https://app.dimensions.ai/details/publication/pub.1111269033"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55826_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11269-018-2162-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11269-018-2162-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11269-018-2162-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11269-018-2162-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11269-018-2162-7'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      43 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11269-018-2162-7 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Ne18fd343cd3f4d5897c738add211f2e0
4 schema:citation sg:pub.10.1007/s00704-018-2677-0
5 sg:pub.10.1007/s11069-016-2703-4
6 sg:pub.10.1007/s11069-016-2723-0
7 sg:pub.10.1007/s11269-008-9378-x
8 sg:pub.10.1007/s11269-013-0325-0
9 sg:pub.10.1007/s11269-017-1739-x
10 sg:pub.10.1007/s13201-016-0378-3
11 sg:pub.10.1023/a:1024770124523
12 https://doi.org/10.1002/hyp.10182
13 https://doi.org/10.1016/0022-1694(88)90188-6
14 https://doi.org/10.1017/cbo9780511529443
15 https://doi.org/10.1029/2011wr010782
16 https://doi.org/10.1029/92wr01980
17 https://doi.org/10.1061/(asce)1084-0699(2005)10:1(1)
18 https://doi.org/10.1080/09715010.2016.1177739
19 https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2
20 https://doi.org/10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2
21 https://doi.org/10.1214/aos/1176343003
22 schema:datePublished 2019-02
23 schema:datePublishedReg 2019-02-01
24 schema:description Regional flood frequency analysis has been carried out for estimating peak discharge at regional level over the Kerala State, India, along with at-site flood frequency analysis. For the study, the annual peak discharges of 43 gauging stations having length of data from 14 to 47 years spread over the Kerala State were used. Using L moments and L moment ratio, best fit distribution was identified among the five distributions; Generalised Extreme Value (GEV), Generalised Pareto Distribution (GPA), Generalised Logistic (GLO), Generalised Normal (LN3) and Pearson Type III (PE3) distribution for both at-site and regional flood frequency analysis. Chi-square test, ranking method using statistical indicators and L moment ratio diagram were used for identifying the best fit distribution for at-site flood frequency analysis. It was found that GPA was the best fit distribution for 27 stations, GLO for 14, LN3 for 1 station and GEV for 2 station. After discordancy test, five different homogeneous regions were identified through heterogeneity test to carry out the regional flood frequency analysis (RFFA). After identifying best-fit distributions for each zone, flood growth curves were derived by incorporating the catchment characteristics of the basins. The distribution that was best fit in case of at-site analysis for a gauging site is found to be entirely different than the best fit distribution resulted from RFFA. In RFFA, growth curves that provide the flood magnitude for various return periods can be used to estimate the flood magnitude and frequency at ungauged sites in each region of the Kerala State in India.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf sg:journal.1136873
29 schema:name Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach
30 schema:pagination 1-25
31 schema:productId N78af0d77208d4532af80c388fffe5712
32 N8a7721b06d524e22b7ccbcc390aa3e33
33 Nc00fc98caa6a41008ccc3e2f010e85de
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111269033
35 https://doi.org/10.1007/s11269-018-2162-7
36 schema:sdDatePublished 2019-04-11T08:36
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N24378b2c6a424f94a0f6f6b773d4e9ef
39 schema:url https://link.springer.com/10.1007%2Fs11269-018-2162-7
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N24378b2c6a424f94a0f6f6b773d4e9ef schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N67510650874549b685845f6a4b85acc3 rdf:first sg:person.012053740321.23
46 rdf:rest Nb1ae36b604d84029b9f256e0f81219ad
47 N78af0d77208d4532af80c388fffe5712 schema:name doi
48 schema:value 10.1007/s11269-018-2162-7
49 rdf:type schema:PropertyValue
50 N8a7721b06d524e22b7ccbcc390aa3e33 schema:name readcube_id
51 schema:value e7fc756575868a8dfffd8cc5d05098c2109db437dd4d888d39b871d8cbec0f69
52 rdf:type schema:PropertyValue
53 Nb1ae36b604d84029b9f256e0f81219ad rdf:first sg:person.015533010457.49
54 rdf:rest rdf:nil
55 Nc00fc98caa6a41008ccc3e2f010e85de schema:name dimensions_id
56 schema:value pub.1111269033
57 rdf:type schema:PropertyValue
58 Ne18fd343cd3f4d5897c738add211f2e0 rdf:first sg:person.013672675032.53
59 rdf:rest N67510650874549b685845f6a4b85acc3
60 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
61 schema:name Economics
62 rdf:type schema:DefinedTerm
63 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
64 schema:name Applied Economics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136873 schema:issn 0920-4741
67 1573-1650
68 schema:name Water Resources Management
69 rdf:type schema:Periodical
70 sg:person.012053740321.23 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
71 schema:familyName Jothiprakash
72 schema:givenName V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053740321.23
74 rdf:type schema:Person
75 sg:person.013672675032.53 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
76 schema:familyName Drissia
77 schema:givenName T. K.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672675032.53
79 rdf:type schema:Person
80 sg:person.015533010457.49 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
81 schema:familyName Anitha
82 schema:givenName A. B.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015533010457.49
84 rdf:type schema:Person
85 sg:pub.10.1007/s00704-018-2677-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759318
86 https://doi.org/10.1007/s00704-018-2677-0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s11069-016-2703-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020934349
89 https://doi.org/10.1007/s11069-016-2703-4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s11069-016-2723-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032363188
92 https://doi.org/10.1007/s11069-016-2723-0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11269-008-9378-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040701786
95 https://doi.org/10.1007/s11269-008-9378-x
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s11269-013-0325-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005793052
98 https://doi.org/10.1007/s11269-013-0325-0
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s11269-017-1739-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1086032124
101 https://doi.org/10.1007/s11269-017-1739-x
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s13201-016-0378-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044087891
104 https://doi.org/10.1007/s13201-016-0378-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/a:1024770124523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936815
107 https://doi.org/10.1023/a:1024770124523
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/hyp.10182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012282867
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0022-1694(88)90188-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001134876
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1017/cbo9780511529443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098738555
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1029/2011wr010782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035796897
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1029/92wr01980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017880306
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1061/(asce)1084-0699(2005)10:1(1) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616231
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/09715010.2016.1177739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032750839
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350317
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010604632
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1214/aos/1176343003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013887491
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.417971.d schema:alternateName Indian Institute of Technology Bombay
130 schema:name Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.464826.a schema:alternateName Centre for Water Resources Development and Management
133 schema:name Centre for Water Resources Development and Management, Kozhikode, Kerala, India
134 Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...