Edge Curve Scaling and Smoothing with Cubic Spline Interpolation for Image Up-Scaling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01

AUTHORS

Wei-Chen Wu, Tsun-Hsien Wang, Ching-Te Chiu

ABSTRACT

Image up-scaling is an important technique to increase the resolution of an image. Earlier interpolation based approaches have low computation complexity while cause blurring and ringing artifacts in edge regions due to the loss of high frequency details. Patch-based super resolution achieves satisfactory up-scaling images at the penalty of high computation cost. In this paper, we present a scalable edge map to recover high frequency components of edge regions in up-scaled images to improve the sharpness and use a range compression method to reduce ringing artifacts. We propose an efficient 1-D and 2-D approaches to extract edge curves from an original image. Then the cubic spline interpolation is adopted to up-scale an edge map. A smooth function is added to remove zigzag, stair, trapezoid artifacts. Then we apply the patch-based method only on up-scaled edge map to recover the high frequency components. The execution time of our proposed method is only 10 % to 5 % compared to the multi-resolution patch-based super resolution method. Experimental results show that we can achieve similar image quality with G. Freedman et al.’s method [19]. More... »

PAGES

95-113

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11265-014-0936-6

DOI

http://dx.doi.org/10.1007/s11265-014-0936-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039210749


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wei-Chen", 
        "id": "sg:person.012437505541.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012437505541.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Tsun-Hsien", 
        "id": "sg:person.014747154715.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014747154715.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiu", 
        "givenName": "Ching-Te", 
        "id": "sg:person.016261545177.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261545177.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1944846.1944852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010771131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2050625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019629051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1183471.1183474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050111091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.988747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.650118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.935034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1978.1163154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2003.813431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061574441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.881969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2007.891794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2007.896645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.1983.4307610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1986.4767851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2006.881199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2010324.1964994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063159756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093345646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095186702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.1315043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095670660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6333-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705102", 
          "https://doi.org/10.1007/978-1-4612-6333-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6333-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705102", 
          "https://doi.org/10.1007/978-1-4612-6333-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01", 
    "datePublishedReg": "2015-01-01", 
    "description": "Image up-scaling is an important technique to increase the resolution of an image. Earlier interpolation based approaches have low computation complexity while cause blurring and ringing artifacts in edge regions due to the loss of high frequency details. Patch-based super resolution achieves satisfactory up-scaling images at the penalty of high computation cost. In this paper, we present a scalable edge map to recover high frequency components of edge regions in up-scaled images to improve the sharpness and use a range compression method to reduce ringing artifacts. We propose an efficient 1-D and 2-D approaches to extract edge curves from an original image. Then the cubic spline interpolation is adopted to up-scale an edge map. A smooth function is added to remove zigzag, stair, trapezoid artifacts. Then we apply the patch-based method only on up-scaled edge map to recover the high frequency components. The execution time of our proposed method is only 10 % to 5 % compared to the multi-resolution patch-based super resolution method. Experimental results show that we can achieve similar image quality with G. Freedman et al.\u2019s method [19].", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11265-014-0936-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297359", 
        "issn": [
          "0922-5773", 
          "1939-8115"
        ], 
        "name": "Journal of Signal Processing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Edge Curve Scaling and Smoothing with Cubic Spline Interpolation for Image Up-Scaling", 
    "pagination": "95-113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bac75bbbceb9c8dc040935a3fe17a5b38c4629ed675ede15c3d47b584935c458"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11265-014-0936-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039210749"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11265-014-0936-6", 
      "https://app.dimensions.ai/details/publication/pub.1039210749"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11265-014-0936-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11265-014-0936-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11265-014-0936-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11265-014-0936-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11265-014-0936-6'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11265-014-0936-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbcdef19549284bf3b66483625a0f6f5a
4 schema:citation sg:pub.10.1007/978-1-4612-6333-3
5 https://doi.org/10.1109/38.988747
6 https://doi.org/10.1109/83.650118
7 https://doi.org/10.1109/83.935034
8 https://doi.org/10.1109/cvpr.2004.1315043
9 https://doi.org/10.1109/cvpr.2005.7
10 https://doi.org/10.1109/iccv.2009.5459271
11 https://doi.org/10.1109/tassp.1978.1163154
12 https://doi.org/10.1109/tcsvt.2003.813431
13 https://doi.org/10.1109/tip.2006.881969
14 https://doi.org/10.1109/tip.2007.891794
15 https://doi.org/10.1109/tip.2007.896645
16 https://doi.org/10.1109/tip.2010.2050625
17 https://doi.org/10.1109/tmi.1983.4307610
18 https://doi.org/10.1109/tpami.1986.4767851
19 https://doi.org/10.1109/tsp.2006.881199
20 https://doi.org/10.1145/1183471.1183474
21 https://doi.org/10.1145/1944846.1944852
22 https://doi.org/10.1145/2010324.1964994
23 schema:datePublished 2015-01
24 schema:datePublishedReg 2015-01-01
25 schema:description Image up-scaling is an important technique to increase the resolution of an image. Earlier interpolation based approaches have low computation complexity while cause blurring and ringing artifacts in edge regions due to the loss of high frequency details. Patch-based super resolution achieves satisfactory up-scaling images at the penalty of high computation cost. In this paper, we present a scalable edge map to recover high frequency components of edge regions in up-scaled images to improve the sharpness and use a range compression method to reduce ringing artifacts. We propose an efficient 1-D and 2-D approaches to extract edge curves from an original image. Then the cubic spline interpolation is adopted to up-scale an edge map. A smooth function is added to remove zigzag, stair, trapezoid artifacts. Then we apply the patch-based method only on up-scaled edge map to recover the high frequency components. The execution time of our proposed method is only 10 % to 5 % compared to the multi-resolution patch-based super resolution method. Experimental results show that we can achieve similar image quality with G. Freedman et al.’s method [19].
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N37f72c31549e4674a2efd0180839efad
30 N40880d68e1184359b802684380124fa7
31 sg:journal.1297359
32 schema:name Edge Curve Scaling and Smoothing with Cubic Spline Interpolation for Image Up-Scaling
33 schema:pagination 95-113
34 schema:productId N6f6259c5ac52455f9151ff81e7f7d08b
35 Nbc786255ba334176b1372bf361d5da5b
36 Nf92b7ff5c3774a7dabb1e136615f508e
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039210749
38 https://doi.org/10.1007/s11265-014-0936-6
39 schema:sdDatePublished 2019-04-10T20:58
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N586935ea456645aa8169b8ed2d80f7a9
42 schema:url http://link.springer.com/10.1007%2Fs11265-014-0936-6
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N37f72c31549e4674a2efd0180839efad schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 N40880d68e1184359b802684380124fa7 schema:volumeNumber 78
49 rdf:type schema:PublicationVolume
50 N586935ea456645aa8169b8ed2d80f7a9 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N63c745431bcb416199971c8b2391ae0a rdf:first sg:person.016261545177.29
53 rdf:rest rdf:nil
54 N6f6259c5ac52455f9151ff81e7f7d08b schema:name readcube_id
55 schema:value bac75bbbceb9c8dc040935a3fe17a5b38c4629ed675ede15c3d47b584935c458
56 rdf:type schema:PropertyValue
57 Nbc786255ba334176b1372bf361d5da5b schema:name doi
58 schema:value 10.1007/s11265-014-0936-6
59 rdf:type schema:PropertyValue
60 Nbcdef19549284bf3b66483625a0f6f5a rdf:first sg:person.012437505541.33
61 rdf:rest Nd2c3458d1196477abb959c785b2c5bda
62 Nd2c3458d1196477abb959c785b2c5bda rdf:first sg:person.014747154715.16
63 rdf:rest N63c745431bcb416199971c8b2391ae0a
64 Nf92b7ff5c3774a7dabb1e136615f508e schema:name dimensions_id
65 schema:value pub.1039210749
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1297359 schema:issn 0922-5773
74 1939-8115
75 schema:name Journal of Signal Processing Systems
76 rdf:type schema:Periodical
77 sg:person.012437505541.33 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
78 schema:familyName Wu
79 schema:givenName Wei-Chen
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012437505541.33
81 rdf:type schema:Person
82 sg:person.014747154715.16 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
83 schema:familyName Wang
84 schema:givenName Tsun-Hsien
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014747154715.16
86 rdf:type schema:Person
87 sg:person.016261545177.29 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
88 schema:familyName Chiu
89 schema:givenName Ching-Te
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261545177.29
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-4612-6333-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705102
93 https://doi.org/10.1007/978-1-4612-6333-3
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/38.988747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164383
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/83.650118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239671
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/83.935034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240354
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/cvpr.2004.1315043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095670660
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/cvpr.2005.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095186702
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/iccv.2009.5459271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093345646
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tassp.1978.1163154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518481
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/tcsvt.2003.813431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061574441
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tip.2006.881969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641581
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tip.2007.891794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641710
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tip.2007.896645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641749
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tip.2010.2050625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019629051
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tmi.1983.4307610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694052
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tpami.1986.4767851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742261
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tsp.2006.881199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800223
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/1183471.1183474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050111091
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/1944846.1944852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010771131
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/2010324.1964994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063159756
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
132 schema:name National Tsing Hua University, Hsinchu, Taiwan
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...