Data Center Switch for Load Balanced Fat-Trees View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

Wei-Chih Lai, Ching-Te Chiu

ABSTRACT

With the growing of cloud computing, the need of computing power no longer can be satisfied with a few powerful servers or small scale parallel computer systems. More and more servers are connected together as a data center network. Then, fault tolerance becomes an import issue when building a massive data center network. Currently, many researches focus on building fat-tree data center networks. In this paper, we propose a load balanced fat-tree architecture with uniform mapping connection patterns to provide higher fault tolerance capability for heavy traffic load networks. Two fault tolerated 4 × 4 banyan type switch designs are introduced to improve the fault tolerance capability of fat-tree networks. Finally, fault tolerance capability evaluations of link or switch faults in fat-tree network are given to support our idea, and a 4 × 4 banyan type switch IC is demonstrated as the commodity switch for building the fault tolerant fat-tree data center networks. The 4 × 4 banyan type switch IC is fabricated in 90 nm CMOS technology, and the maximum operation rate of the IC is 5.8 Gbps per channel or 23.2 Gbps total data rate with only 23 ps peak-to-peak jitter. More... »

PAGES

173-187

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11265-012-0710-6

DOI

http://dx.doi.org/10.1007/s11265-012-0710-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028627598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Wei-Chih", 
        "id": "sg:person.012377223413.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377223413.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiu", 
        "givenName": "Ching-Te", 
        "id": "sg:person.016261545177.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261545177.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1594977.1592577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004352478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1402958.1402967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022488380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1402958.1402968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041594303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-3664(01)00427-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044447011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1953.tb01433.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053647831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mm.2009.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061408674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.1980.1675679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061532486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.1985.6312192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061533294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2010.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061535054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcomm.2008.050427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061556868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2008.2010624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061715009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2009.2037318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061715190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2008.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061753293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1402946.1402967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063155198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcomw.2010.5466647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094711539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcomw.2010.5466647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094711539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2009.5062153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095039267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hoti.2009.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095214111"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "With the growing of cloud computing, the need of computing power no longer can be satisfied with a few powerful servers or small scale parallel computer systems. More and more servers are connected together as a data center network. Then, fault tolerance becomes an import issue when building a massive data center network. Currently, many researches focus on building fat-tree data center networks. In this paper, we propose a load balanced fat-tree architecture with uniform mapping connection patterns to provide higher fault tolerance capability for heavy traffic load networks. Two fault tolerated 4 \u00d7 4 banyan type switch designs are introduced to improve the fault tolerance capability of fat-tree networks. Finally, fault tolerance capability evaluations of link or switch faults in fat-tree network are given to support our idea, and a 4 \u00d7 4 banyan type switch IC is demonstrated as the commodity switch for building the fault tolerant fat-tree data center networks. The 4 \u00d7 4 banyan type switch IC is fabricated in 90 nm CMOS technology, and the maximum operation rate of the IC is 5.8 Gbps per channel or 23.2 Gbps total data rate with only 23 ps peak-to-peak jitter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11265-012-0710-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297359", 
        "issn": [
          "0922-5773", 
          "1939-8115"
        ], 
        "name": "Journal of Signal Processing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Data Center Switch for Load Balanced Fat-Trees", 
    "pagination": "173-187", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "885f8b0b78114f283041f00b3b2edf9984c4c5e6cdcfb929750b7284f8be8d28"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11265-012-0710-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028627598"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11265-012-0710-6", 
      "https://app.dimensions.ai/details/publication/pub.1028627598"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11265-012-0710-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11265-012-0710-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11265-012-0710-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11265-012-0710-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11265-012-0710-6'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11265-012-0710-6 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author Ncb825dfbc19e444dbb349f09ff91e046
4 schema:citation https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
5 https://doi.org/10.1016/s0140-3664(01)00427-3
6 https://doi.org/10.1109/hoti.2009.11
7 https://doi.org/10.1109/infcom.2009.5062153
8 https://doi.org/10.1109/infcomw.2010.5466647
9 https://doi.org/10.1109/mm.2009.71
10 https://doi.org/10.1109/tc.1980.1675679
11 https://doi.org/10.1109/tc.1985.6312192
12 https://doi.org/10.1109/tc.2010.97
13 https://doi.org/10.1109/tcomm.2008.050427
14 https://doi.org/10.1109/tnet.2008.2010624
15 https://doi.org/10.1109/tnet.2009.2037318
16 https://doi.org/10.1109/tpds.2008.130
17 https://doi.org/10.1145/1402946.1402967
18 https://doi.org/10.1145/1402958.1402967
19 https://doi.org/10.1145/1402958.1402968
20 https://doi.org/10.1145/1594977.1592577
21 schema:datePublished 2013-06
22 schema:datePublishedReg 2013-06-01
23 schema:description With the growing of cloud computing, the need of computing power no longer can be satisfied with a few powerful servers or small scale parallel computer systems. More and more servers are connected together as a data center network. Then, fault tolerance becomes an import issue when building a massive data center network. Currently, many researches focus on building fat-tree data center networks. In this paper, we propose a load balanced fat-tree architecture with uniform mapping connection patterns to provide higher fault tolerance capability for heavy traffic load networks. Two fault tolerated 4 × 4 banyan type switch designs are introduced to improve the fault tolerance capability of fat-tree networks. Finally, fault tolerance capability evaluations of link or switch faults in fat-tree network are given to support our idea, and a 4 × 4 banyan type switch IC is demonstrated as the commodity switch for building the fault tolerant fat-tree data center networks. The 4 × 4 banyan type switch IC is fabricated in 90 nm CMOS technology, and the maximum operation rate of the IC is 5.8 Gbps per channel or 23.2 Gbps total data rate with only 23 ps peak-to-peak jitter.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N1c5c9fdf36084d228e78d6ae22543895
28 N7be5758e95a14a01a4cacb9659085a14
29 sg:journal.1297359
30 schema:name Data Center Switch for Load Balanced Fat-Trees
31 schema:pagination 173-187
32 schema:productId N226facdea37c46a6a8a938d2909d765a
33 N9b305f3e74e641d58e727a8e61949fae
34 Ne60250d153ea422f8bbe5d9d6311da54
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028627598
36 https://doi.org/10.1007/s11265-012-0710-6
37 schema:sdDatePublished 2019-04-10T21:39
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nc6dde18119d44dcf9d4f065f495fbdfa
40 schema:url http://link.springer.com/10.1007%2Fs11265-012-0710-6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N01d1c5ae0c6443bda327496d79296a05 rdf:first sg:person.016261545177.29
45 rdf:rest rdf:nil
46 N1c5c9fdf36084d228e78d6ae22543895 schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N226facdea37c46a6a8a938d2909d765a schema:name dimensions_id
49 schema:value pub.1028627598
50 rdf:type schema:PropertyValue
51 N7be5758e95a14a01a4cacb9659085a14 schema:volumeNumber 71
52 rdf:type schema:PublicationVolume
53 N9b305f3e74e641d58e727a8e61949fae schema:name doi
54 schema:value 10.1007/s11265-012-0710-6
55 rdf:type schema:PropertyValue
56 Nc6dde18119d44dcf9d4f065f495fbdfa schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Ncb825dfbc19e444dbb349f09ff91e046 rdf:first sg:person.012377223413.91
59 rdf:rest N01d1c5ae0c6443bda327496d79296a05
60 Ne60250d153ea422f8bbe5d9d6311da54 schema:name readcube_id
61 schema:value 885f8b0b78114f283041f00b3b2edf9984c4c5e6cdcfb929750b7284f8be8d28
62 rdf:type schema:PropertyValue
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
67 schema:name Computer Software
68 rdf:type schema:DefinedTerm
69 sg:journal.1297359 schema:issn 0922-5773
70 1939-8115
71 schema:name Journal of Signal Processing Systems
72 rdf:type schema:Periodical
73 sg:person.012377223413.91 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
74 schema:familyName Lai
75 schema:givenName Wei-Chih
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377223413.91
77 rdf:type schema:Person
78 sg:person.016261545177.29 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
79 schema:familyName Chiu
80 schema:givenName Ching-Te
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261545177.29
82 rdf:type schema:Person
83 https://doi.org/10.1002/j.1538-7305.1953.tb01433.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053647831
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0140-3664(01)00427-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044447011
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/hoti.2009.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095214111
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/infcom.2009.5062153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095039267
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/infcomw.2010.5466647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094711539
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/mm.2009.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061408674
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tc.1980.1675679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061532486
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tc.1985.6312192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061533294
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tc.2010.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061535054
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tcomm.2008.050427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061556868
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tnet.2008.2010624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061715009
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/tnet.2009.2037318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061715190
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tpds.2008.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061753293
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1145/1402946.1402967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063155198
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1145/1402958.1402967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022488380
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1145/1402958.1402968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041594303
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/1594977.1592577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004352478
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
118 schema:name Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...