Detection of Structural Features in Biological Signals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

Aleksandar Jovanović, Aleksandar Perović, Wlodzimierz Klonowski, Wlodzisław Duch, Zoran Đorđević, Slađana Spasić

ABSTRACT

In this article structures in biological signals are treated. The simpler—directly visible in the signals, which still demand serious methods and algorithms in the feature detection, similarity investigation and classification. The major actions in this domain are of geometric, thus simpler sort, though there are still hard problems related to simple situations. The other large class of less simple signals unsuitable for direct geometric or statistic approach, are signals with interesting frequency components and behavior, those suitable for spectroscopic analysis. Semantics of spectroscopy, spectroscopic structures and research demanded operations and transformations on spectra and time spectra are presented. The both classes of structures and related analysis methods and tools share a large common set of algorithms, all of which aiming to the full automatization. Some of the signal features present in the brain signal patterns are demonstrated, with the contexts relevant in BCI, brain computer interfaces. Mathematical representations, invariants and complete characterization of structures in broad variety of biological signals are in the central focus. More... »

PAGES

115-129

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11265-009-0407-7

DOI

http://dx.doi.org/10.1007/s11265-009-0407-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047848620


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Group for Intelligent Systems, School of Mathematics, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jovanovi\u0107", 
        "givenName": "Aleksandar", 
        "id": "sg:person.0743170767.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743170767.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Group for Intelligent Systems, School of Mathematics, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perovi\u0107", 
        "givenName": "Aleksandar", 
        "id": "sg:person.07377310746.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377310746.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biocybernetics and Biomedical Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418829.e", 
          "name": [
            "Lab. Biosignal Analysis Fundamentals, Institute of Biocybernetics & Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klonowski", 
        "givenName": "Wlodzimierz", 
        "id": "sg:person.01130353707.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130353707.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nicolaus Copernicus University", 
          "id": "https://www.grid.ac/institutes/grid.5374.5", 
          "name": [
            "Department of Informatics, Nicolaus Copernicus University, Torun, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duch", 
        "givenName": "Wlodzis\u0142aw", 
        "id": "sg:person.013666446255.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666446255.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Group for Intelligent Systems, School of Mathematics, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0110or\u0111evi\u0107", 
        "givenName": "Zoran", 
        "id": "sg:person.011714240670.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714240670.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Department of Life Sciences, Institute for Multidisciplinary Research, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spasi\u0107", 
        "givenName": "Sla\u0111ana", 
        "id": "sg:person.0701510300.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701510300.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1254/jphs.95.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012767473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/abs0804547g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015574714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2007/91651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022791357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/ceh-100102667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028119986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2009/950403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033063265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010416315047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037583027", 
          "https://doi.org/10.1023/a:1010416315047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-008-9306-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038073681", 
          "https://doi.org/10.1007/s11538-008-9306-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657598", 
          "https://doi.org/10.1007/bf02345811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657598", 
          "https://doi.org/10.1007/bf02345811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1634391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075188697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077029385", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812774217_0031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096053706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471461288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109491870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491870", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "In this article structures in biological signals are treated. The simpler\u2014directly visible in the signals, which still demand serious methods and algorithms in the feature detection, similarity investigation and classification. The major actions in this domain are of geometric, thus simpler sort, though there are still hard problems related to simple situations. The other large class of less simple signals unsuitable for direct geometric or statistic approach, are signals with interesting frequency components and behavior, those suitable for spectroscopic analysis. Semantics of spectroscopy, spectroscopic structures and research demanded operations and transformations on spectra and time spectra are presented. The both classes of structures and related analysis methods and tools share a large common set of algorithms, all of which aiming to the full automatization. Some of the signal features present in the brain signal patterns are demonstrated, with the contexts relevant in BCI, brain computer interfaces. Mathematical representations, invariants and complete characterization of structures in broad variety of biological signals are in the central focus.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11265-009-0407-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297359", 
        "issn": [
          "0922-5773", 
          "1939-8115"
        ], 
        "name": "Journal of Signal Processing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "Detection of Structural Features in Biological Signals", 
    "pagination": "115-129", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3f05af6e80d8f891a38e33dfc6d14c51244a6cae34a45655868c4c052511544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11265-009-0407-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047848620"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11265-009-0407-7", 
      "https://app.dimensions.ai/details/publication/pub.1047848620"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11265-009-0407-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11265-009-0407-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11265-009-0407-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11265-009-0407-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11265-009-0407-7'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11265-009-0407-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N436ecb4f0039421d89ee2c239bfc6d0d
4 schema:citation sg:pub.10.1007/bf02345811
5 sg:pub.10.1007/s11538-008-9306-5
6 sg:pub.10.1023/a:1010416315047
7 https://app.dimensions.ai/details/publication/pub.1077029385
8 https://app.dimensions.ai/details/publication/pub.1109491870
9 https://doi.org/10.1002/0471461288
10 https://doi.org/10.1055/s-0038-1634391
11 https://doi.org/10.1081/ceh-100102667
12 https://doi.org/10.1142/9789812774217_0031
13 https://doi.org/10.1155/2007/91651
14 https://doi.org/10.1155/2009/950403
15 https://doi.org/10.1254/jphs.95.47
16 https://doi.org/10.2298/abs0804547g
17 schema:datePublished 2010-07
18 schema:datePublishedReg 2010-07-01
19 schema:description In this article structures in biological signals are treated. The simpler—directly visible in the signals, which still demand serious methods and algorithms in the feature detection, similarity investigation and classification. The major actions in this domain are of geometric, thus simpler sort, though there are still hard problems related to simple situations. The other large class of less simple signals unsuitable for direct geometric or statistic approach, are signals with interesting frequency components and behavior, those suitable for spectroscopic analysis. Semantics of spectroscopy, spectroscopic structures and research demanded operations and transformations on spectra and time spectra are presented. The both classes of structures and related analysis methods and tools share a large common set of algorithms, all of which aiming to the full automatization. Some of the signal features present in the brain signal patterns are demonstrated, with the contexts relevant in BCI, brain computer interfaces. Mathematical representations, invariants and complete characterization of structures in broad variety of biological signals are in the central focus.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N3fcd4c8738ea4f20bbd8440eb57b8964
24 N6f66f08440614f69acd16af6413e5a65
25 sg:journal.1297359
26 schema:name Detection of Structural Features in Biological Signals
27 schema:pagination 115-129
28 schema:productId N0da5c8a40813429a85ba8cb6622e6928
29 N78133eaf8a014396935c4f91a9e437f9
30 Nebc045bd30cc4350922b702f79cd17ec
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047848620
32 https://doi.org/10.1007/s11265-009-0407-7
33 schema:sdDatePublished 2019-04-11T09:42
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N63254873ced44ab481737efb472316eb
36 schema:url http://link.springer.com/10.1007%2Fs11265-009-0407-7
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0da5c8a40813429a85ba8cb6622e6928 schema:name doi
41 schema:value 10.1007/s11265-009-0407-7
42 rdf:type schema:PropertyValue
43 N3fcd4c8738ea4f20bbd8440eb57b8964 schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N436ecb4f0039421d89ee2c239bfc6d0d rdf:first sg:person.0743170767.62
46 rdf:rest Nff235db3efcd4020a71f085e0f0fc442
47 N5def245da6b748ef980e734adcdbdeff rdf:first sg:person.011714240670.53
48 rdf:rest Nfce6c752e6d54ac786596b1f5911750d
49 N63254873ced44ab481737efb472316eb schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N677aa027ee6c4aa9b73ad7fc8e5b92e8 rdf:first sg:person.01130353707.87
52 rdf:rest Ne29146fea69b45d3aebfa36387da391f
53 N6f66f08440614f69acd16af6413e5a65 schema:volumeNumber 60
54 rdf:type schema:PublicationVolume
55 N78133eaf8a014396935c4f91a9e437f9 schema:name readcube_id
56 schema:value e3f05af6e80d8f891a38e33dfc6d14c51244a6cae34a45655868c4c052511544
57 rdf:type schema:PropertyValue
58 Ne29146fea69b45d3aebfa36387da391f rdf:first sg:person.013666446255.99
59 rdf:rest N5def245da6b748ef980e734adcdbdeff
60 Nebc045bd30cc4350922b702f79cd17ec schema:name dimensions_id
61 schema:value pub.1047848620
62 rdf:type schema:PropertyValue
63 Nfce6c752e6d54ac786596b1f5911750d rdf:first sg:person.0701510300.19
64 rdf:rest rdf:nil
65 Nff235db3efcd4020a71f085e0f0fc442 rdf:first sg:person.07377310746.20
66 rdf:rest N677aa027ee6c4aa9b73ad7fc8e5b92e8
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1297359 schema:issn 0922-5773
74 1939-8115
75 schema:name Journal of Signal Processing Systems
76 rdf:type schema:Periodical
77 sg:person.01130353707.87 schema:affiliation https://www.grid.ac/institutes/grid.418829.e
78 schema:familyName Klonowski
79 schema:givenName Wlodzimierz
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130353707.87
81 rdf:type schema:Person
82 sg:person.011714240670.53 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
83 schema:familyName Đorđević
84 schema:givenName Zoran
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714240670.53
86 rdf:type schema:Person
87 sg:person.013666446255.99 schema:affiliation https://www.grid.ac/institutes/grid.5374.5
88 schema:familyName Duch
89 schema:givenName Wlodzisław
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666446255.99
91 rdf:type schema:Person
92 sg:person.0701510300.19 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
93 schema:familyName Spasić
94 schema:givenName Slađana
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701510300.19
96 rdf:type schema:Person
97 sg:person.07377310746.20 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
98 schema:familyName Perović
99 schema:givenName Aleksandar
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377310746.20
101 rdf:type schema:Person
102 sg:person.0743170767.62 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
103 schema:familyName Jovanović
104 schema:givenName Aleksandar
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743170767.62
106 rdf:type schema:Person
107 sg:pub.10.1007/bf02345811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040657598
108 https://doi.org/10.1007/bf02345811
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11538-008-9306-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038073681
111 https://doi.org/10.1007/s11538-008-9306-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/a:1010416315047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037583027
114 https://doi.org/10.1023/a:1010416315047
115 rdf:type schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1077029385 schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1109491870 schema:CreativeWork
118 https://doi.org/10.1002/0471461288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109491870
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1055/s-0038-1634391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075188697
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1081/ceh-100102667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028119986
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1142/9789812774217_0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096053706
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1155/2007/91651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022791357
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1155/2009/950403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033063265
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1254/jphs.95.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012767473
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2298/abs0804547g schema:sameAs https://app.dimensions.ai/details/publication/pub.1015574714
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.418829.e schema:alternateName Institute of Biocybernetics and Biomedical Engineering
135 schema:name Lab. Biosignal Analysis Fundamentals, Institute of Biocybernetics & Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.5374.5 schema:alternateName Nicolaus Copernicus University
138 schema:name Department of Informatics, Nicolaus Copernicus University, Torun, Poland
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.7149.b schema:alternateName University of Belgrade
141 schema:name Department of Life Sciences, Institute for Multidisciplinary Research, Belgrade, Serbia
142 Group for Intelligent Systems, School of Mathematics, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...