Snowvision: Segmenting, Identifying, and Discovering Stamped Curve Patterns from Fragments of Pottery View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08-27

AUTHORS

Yuhang Lu, Jun Zhou, Sam T. McDorman, Canyu Zhang, Deja Scott, Jake Bukuts, Colin Wilder, Karen Y. Smith, Song Wang

ABSTRACT

In southeastern North America, Indigenous potters and woodworkers carved complex, primarily abstract, designs into wooden pottery paddles, which were subsequently used to thin the walls of hand-built, clay vessels. Original paddle designs carry rich historical and cultural information, but pottery paddles from ancient times have not survived. Archaeologists have studied design fragments stamped on sherds to reconstruct complete or nearly complete designs, which is extremely laborious and time-consuming. In Snowvision, we aim to develop computer vision methods to assist archaeologists to accomplish this goal more efficiently and effectively. For this purpose, we identify and study three computer vision tasks: (1) extracting curve structures stamped on pottery sherds; (2) matching sherds to known designs; (3) clustering sherds with unknown designs. Due to the noisy, highly fragmented, composite-curve patterns, each task poses unique challenges to existing methods. To solve them, we propose (1) a weakly-supervised CNN-based curve structure segmentation method that takes only curve skeleton labels to predict full curve masks; (2) a patch-based curve pattern matching method to address the problem of partial matching in terms of noisy binary images; (3) a curve pattern clustering method consisting of pairwise curve matching, graph partitioning and sherd stitching. We evaluate the proposed methods on a set of collected sherds and extensive experimental results show the effectiveness of the proposed algorithms. More... »

PAGES

2707-2732

References to SciGraph publications

  • 2018-10-06. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation in COMPUTER VISION – ECCV 2018
  • 2015-11-25. Deep Metric Learning Using Triplet Network in SIMILARITY-BASED PATTERN RECOGNITION
  • 2019-01-04. Cross-Domain Image Matching with Deep Feature Maps in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2014-06-05. Decision support system for classifying archaeological pottery profiles based on Mathematical Morphology in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2002-12. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2009-09-09. The Pascal Visual Object Classes (VOC) Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2018-10-05. Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition in COMPUTER VISION – ECCV 2018
  • 2015-04-11. ImageNet Large Scale Visual Recognition Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2016-09-18. A Streamlined Photometric Stereo Framework for Cultural Heritage in COMPUTER VISION – ECCV 2016 WORKSHOPS
  • 2003. Curve Matching Using the Fast Marching Method in ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION
  • 2019. Ceramics and Society, A Technological Approach to Archaeological Assemblages in NONE
  • 2018-10-09. Deep Clustering for Unsupervised Learning of Visual Features in COMPUTER VISION – ECCV 2018
  • 1999. Blobworld: A System for Region-Based Image Indexing and Retrieval in VISUAL INFORMATION AND INFORMATION SYSTEMS
  • 2016-09-17. LIFT: Learned Invariant Feature Transform in COMPUTER VISION – ECCV 2016
  • 2006. SURF: Speeded Up Robust Features in COMPUTER VISION – ECCV 2006
  • 2019-12-04. A Study of Geometric Stamped Pattern Pottery and Early Maritime Cultural Interactions Between Mainland China and Taiwan in PREHISTORIC MARITIME CULTURES AND SEAFARING IN EAST ASIA
  • 2020-09-24. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network in NATURE COMMUNICATIONS
  • 1984. Difference of Gaussians in CATALOGUE OF ARTIFICIAL INTELLIGENCE TOOLS
  • 2006-12-19. Automatic Panoramic Image Stitching using Invariant Features in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11263-022-01669-7

    DOI

    http://dx.doi.org/10.1007/s11263-022-01669-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150553761


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yuhang", 
            "id": "sg:person.07760636314.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760636314.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Jun", 
            "id": "sg:person.015742274255.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742274255.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Anthropology and School of Information Science, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Anthropology and School of Information Science, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McDorman", 
            "givenName": "Sam T.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Canyu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scott", 
            "givenName": "Deja", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bukuts", 
            "givenName": "Jake", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of History, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of History, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wilder", 
            "givenName": "Colin", 
            "id": "sg:person.01155616321.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155616321.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "South Carolina Department of Natural Resources, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.448411.c", 
              "name": [
                "South Carolina Department of Natural Resources, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Karen Y.", 
            "id": "sg:person.015075301603.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075301603.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Song", 
            "id": "sg:person.0610554027.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610554027.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-030-01234-2_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107454614", 
              "https://doi.org/10.1007/978-3-030-01234-2_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-18606-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131130545", 
              "https://doi.org/10.1038/s41467-020-18606-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047688119", 
              "https://doi.org/10.1007/3-540-48762-x_63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-014-2063-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042412859", 
              "https://doi.org/10.1007/s11042-014-2063-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01264-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107502756", 
              "https://doi.org/10.1007/978-3-030-01264-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46466-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032776736", 
              "https://doi.org/10.1007/978-3-319-46466-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24261-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026974855", 
              "https://doi.org/10.1007/978-3-319-24261-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01240-3_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107463369", 
              "https://doi.org/10.1007/978-3-030-01240-3_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-0002-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049205751", 
              "https://doi.org/10.1007/s11263-006-0002-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-32-9256-7_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123093655", 
              "https://doi.org/10.1007/978-981-32-9256-7_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11744023_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000158525", 
              "https://doi.org/10.1007/11744023_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45063-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003873955", 
              "https://doi.org/10.1007/978-3-540-45063-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-03973-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112140597", 
              "https://doi.org/10.1007/978-3-030-03973-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020874308076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035462968", 
              "https://doi.org/10.1023/a:1020874308076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-015-0816-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009767488", 
              "https://doi.org/10.1007/s11263-015-0816-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-96868-6_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050429462", 
              "https://doi.org/10.1007/978-3-642-96868-6_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-009-0275-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014796149", 
              "https://doi.org/10.1007/s11263-009-0275-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46604-0_51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053105575", 
              "https://doi.org/10.1007/978-3-319-46604-0_51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-018-01143-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111154671", 
              "https://doi.org/10.1007/s11263-018-01143-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-27", 
        "datePublishedReg": "2022-08-27", 
        "description": "In southeastern North America, Indigenous potters and woodworkers carved complex, primarily abstract, designs into wooden pottery paddles, which were subsequently used to thin the walls of hand-built, clay vessels. Original paddle designs carry rich historical and cultural information, but pottery paddles from ancient times have not survived. Archaeologists have studied design fragments stamped on sherds to reconstruct complete or nearly complete designs, which is extremely laborious and time-consuming. In Snowvision, we aim to develop computer vision methods to assist archaeologists to accomplish this goal more efficiently and effectively. For this purpose, we identify and study three computer vision tasks: (1) extracting curve structures stamped on pottery sherds; (2) matching sherds to known designs; (3) clustering sherds with unknown designs. Due to the noisy, highly fragmented, composite-curve patterns, each task poses unique challenges to existing methods. To solve them, we propose (1) a weakly-supervised CNN-based curve structure segmentation method that takes only curve skeleton labels to predict full curve masks; (2) a patch-based curve pattern matching method to address the problem of partial matching in terms of noisy binary images; (3) a curve pattern clustering method consisting of pairwise curve matching, graph partitioning and sherd stitching. We evaluate the proposed methods on a set of collected sherds and extensive experimental results show the effectiveness of the proposed algorithms.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11263-022-01669-7", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8670458", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6624630", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032807", 
            "issn": [
              "0920-5691", 
              "1573-1405"
            ], 
            "name": "International Journal of Computer Vision", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "130"
          }
        ], 
        "keywords": [
          "computer vision tasks", 
          "computer vision methods", 
          "Extensive experimental results", 
          "noisy binary images", 
          "pattern matching method", 
          "vision tasks", 
          "vision methods", 
          "design fragments", 
          "graph partitioning", 
          "segmentation method", 
          "partial matching", 
          "binary image", 
          "matching method", 
          "unknown designs", 
          "curve matching", 
          "experimental results", 
          "task", 
          "complete design", 
          "matching", 
          "cultural information", 
          "known designs", 
          "CNN", 
          "stitching", 
          "algorithm", 
          "design", 
          "unique challenges", 
          "images", 
          "labels", 
          "method", 
          "information", 
          "set", 
          "partitioning", 
          "challenges", 
          "effectiveness", 
          "identifying", 
          "goal", 
          "curve structure", 
          "mask", 
          "patterns", 
          "terms", 
          "time", 
          "purpose", 
          "results", 
          "archaeologists", 
          "structure", 
          "paddle", 
          "curve pattern", 
          "fragments", 
          "ancient times", 
          "vessels", 
          "North America", 
          "sherds", 
          "Potter", 
          "wall", 
          "pottery sherds", 
          "America", 
          "pottery", 
          "southeastern North America", 
          "problem", 
          "woodworkers", 
          "clay vessels", 
          "paddle design", 
          "fragments of pottery"
        ], 
        "name": "Snowvision: Segmenting, Identifying, and Discovering Stamped Curve Patterns from Fragments of Pottery", 
        "pagination": "2707-2732", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150553761"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11263-022-01669-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11263-022-01669-7", 
          "https://app.dimensions.ai/details/publication/pub.1150553761"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_939.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11263-022-01669-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01669-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01669-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01669-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01669-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      21 PREDICATES      106 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11263-022-01669-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N521ba812c9334cfe80399a6601b386e6
    4 schema:citation sg:pub.10.1007/11744023_32
    5 sg:pub.10.1007/3-540-48762-x_63
    6 sg:pub.10.1007/978-3-030-01234-2_49
    7 sg:pub.10.1007/978-3-030-01240-3_35
    8 sg:pub.10.1007/978-3-030-01264-9_9
    9 sg:pub.10.1007/978-3-030-03973-8
    10 sg:pub.10.1007/978-3-319-24261-3_7
    11 sg:pub.10.1007/978-3-319-46466-4_28
    12 sg:pub.10.1007/978-3-319-46604-0_51
    13 sg:pub.10.1007/978-3-540-45063-4_3
    14 sg:pub.10.1007/978-3-642-96868-6_57
    15 sg:pub.10.1007/978-981-32-9256-7_13
    16 sg:pub.10.1007/s11042-014-2063-6
    17 sg:pub.10.1007/s11263-006-0002-3
    18 sg:pub.10.1007/s11263-009-0275-4
    19 sg:pub.10.1007/s11263-015-0816-y
    20 sg:pub.10.1007/s11263-018-01143-3
    21 sg:pub.10.1023/a:1020874308076
    22 sg:pub.10.1038/s41467-020-18606-2
    23 schema:datePublished 2022-08-27
    24 schema:datePublishedReg 2022-08-27
    25 schema:description In southeastern North America, Indigenous potters and woodworkers carved complex, primarily abstract, designs into wooden pottery paddles, which were subsequently used to thin the walls of hand-built, clay vessels. Original paddle designs carry rich historical and cultural information, but pottery paddles from ancient times have not survived. Archaeologists have studied design fragments stamped on sherds to reconstruct complete or nearly complete designs, which is extremely laborious and time-consuming. In Snowvision, we aim to develop computer vision methods to assist archaeologists to accomplish this goal more efficiently and effectively. For this purpose, we identify and study three computer vision tasks: (1) extracting curve structures stamped on pottery sherds; (2) matching sherds to known designs; (3) clustering sherds with unknown designs. Due to the noisy, highly fragmented, composite-curve patterns, each task poses unique challenges to existing methods. To solve them, we propose (1) a weakly-supervised CNN-based curve structure segmentation method that takes only curve skeleton labels to predict full curve masks; (2) a patch-based curve pattern matching method to address the problem of partial matching in terms of noisy binary images; (3) a curve pattern clustering method consisting of pairwise curve matching, graph partitioning and sherd stitching. We evaluate the proposed methods on a set of collected sherds and extensive experimental results show the effectiveness of the proposed algorithms.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N24b5b2e422cc4343a950022b22a7f5df
    29 N86376c687f3e4e68a8b6a074e865f336
    30 sg:journal.1032807
    31 schema:keywords America
    32 CNN
    33 Extensive experimental results
    34 North America
    35 Potter
    36 algorithm
    37 ancient times
    38 archaeologists
    39 binary image
    40 challenges
    41 clay vessels
    42 complete design
    43 computer vision methods
    44 computer vision tasks
    45 cultural information
    46 curve matching
    47 curve pattern
    48 curve structure
    49 design
    50 design fragments
    51 effectiveness
    52 experimental results
    53 fragments
    54 fragments of pottery
    55 goal
    56 graph partitioning
    57 identifying
    58 images
    59 information
    60 known designs
    61 labels
    62 mask
    63 matching
    64 matching method
    65 method
    66 noisy binary images
    67 paddle
    68 paddle design
    69 partial matching
    70 partitioning
    71 pattern matching method
    72 patterns
    73 pottery
    74 pottery sherds
    75 problem
    76 purpose
    77 results
    78 segmentation method
    79 set
    80 sherds
    81 southeastern North America
    82 stitching
    83 structure
    84 task
    85 terms
    86 time
    87 unique challenges
    88 unknown designs
    89 vessels
    90 vision methods
    91 vision tasks
    92 wall
    93 woodworkers
    94 schema:name Snowvision: Segmenting, Identifying, and Discovering Stamped Curve Patterns from Fragments of Pottery
    95 schema:pagination 2707-2732
    96 schema:productId N97ad4ab193c64699b654daec314f4841
    97 N9825c60ecbf141d995a3195e76bc6552
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150553761
    99 https://doi.org/10.1007/s11263-022-01669-7
    100 schema:sdDatePublished 2022-11-24T21:09
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N5ec694e2b29c4873aaeb0e10aaf9f927
    103 schema:url https://doi.org/10.1007/s11263-022-01669-7
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N02f2e7ade2164df89eb7e64daa3f8995 rdf:first N253c601b550d43e99aee17793105b424
    108 rdf:rest N13b2c1c8133d470285ded7380e2ba26b
    109 N0cd30f91aba145b8a19572a43a734e9a rdf:first sg:person.015742274255.22
    110 rdf:rest N7e3c37b160b44f3597c9ca4f8391bf05
    111 N13b2c1c8133d470285ded7380e2ba26b rdf:first Na5e2c1f4a2f94ba3af325c6c5fb482ad
    112 rdf:rest N233b08fae4204dbfa700ffe61ce0f0ee
    113 N233b08fae4204dbfa700ffe61ce0f0ee rdf:first Nd409ea75d29c4bf8aac61299b7f61ba9
    114 rdf:rest N9faee1b16991458aba44293c9a568927
    115 N24b5b2e422cc4343a950022b22a7f5df schema:volumeNumber 130
    116 rdf:type schema:PublicationVolume
    117 N253c601b550d43e99aee17793105b424 schema:affiliation grid-institutes:grid.254567.7
    118 schema:familyName Zhang
    119 schema:givenName Canyu
    120 rdf:type schema:Person
    121 N2e17dbf112094741a46e11740a7865ae schema:affiliation grid-institutes:grid.254567.7
    122 schema:familyName McDorman
    123 schema:givenName Sam T.
    124 rdf:type schema:Person
    125 N521ba812c9334cfe80399a6601b386e6 rdf:first sg:person.07760636314.26
    126 rdf:rest N0cd30f91aba145b8a19572a43a734e9a
    127 N5ec694e2b29c4873aaeb0e10aaf9f927 schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 N7e3c37b160b44f3597c9ca4f8391bf05 rdf:first N2e17dbf112094741a46e11740a7865ae
    130 rdf:rest N02f2e7ade2164df89eb7e64daa3f8995
    131 N85d4c0276fb0411c95dbda04758f63fc rdf:first sg:person.0610554027.29
    132 rdf:rest rdf:nil
    133 N86376c687f3e4e68a8b6a074e865f336 schema:issueNumber 11
    134 rdf:type schema:PublicationIssue
    135 N97ad4ab193c64699b654daec314f4841 schema:name doi
    136 schema:value 10.1007/s11263-022-01669-7
    137 rdf:type schema:PropertyValue
    138 N9825c60ecbf141d995a3195e76bc6552 schema:name dimensions_id
    139 schema:value pub.1150553761
    140 rdf:type schema:PropertyValue
    141 N9faee1b16991458aba44293c9a568927 rdf:first sg:person.01155616321.34
    142 rdf:rest Nc7b00d0624204e1d98d0762e3e08e98f
    143 Na5e2c1f4a2f94ba3af325c6c5fb482ad schema:affiliation grid-institutes:grid.254567.7
    144 schema:familyName Scott
    145 schema:givenName Deja
    146 rdf:type schema:Person
    147 Nc7b00d0624204e1d98d0762e3e08e98f rdf:first sg:person.015075301603.56
    148 rdf:rest N85d4c0276fb0411c95dbda04758f63fc
    149 Nd409ea75d29c4bf8aac61299b7f61ba9 schema:affiliation grid-institutes:grid.254567.7
    150 schema:familyName Bukuts
    151 schema:givenName Jake
    152 rdf:type schema:Person
    153 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Information and Computing Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Artificial Intelligence and Image Processing
    158 rdf:type schema:DefinedTerm
    159 sg:grant.6624630 http://pending.schema.org/fundedItem sg:pub.10.1007/s11263-022-01669-7
    160 rdf:type schema:MonetaryGrant
    161 sg:grant.8670458 http://pending.schema.org/fundedItem sg:pub.10.1007/s11263-022-01669-7
    162 rdf:type schema:MonetaryGrant
    163 sg:journal.1032807 schema:issn 0920-5691
    164 1573-1405
    165 schema:name International Journal of Computer Vision
    166 schema:publisher Springer Nature
    167 rdf:type schema:Periodical
    168 sg:person.01155616321.34 schema:affiliation grid-institutes:grid.254567.7
    169 schema:familyName Wilder
    170 schema:givenName Colin
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155616321.34
    172 rdf:type schema:Person
    173 sg:person.015075301603.56 schema:affiliation grid-institutes:grid.448411.c
    174 schema:familyName Smith
    175 schema:givenName Karen Y.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075301603.56
    177 rdf:type schema:Person
    178 sg:person.015742274255.22 schema:affiliation grid-institutes:grid.254567.7
    179 schema:familyName Zhou
    180 schema:givenName Jun
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742274255.22
    182 rdf:type schema:Person
    183 sg:person.0610554027.29 schema:affiliation grid-institutes:grid.254567.7
    184 schema:familyName Wang
    185 schema:givenName Song
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610554027.29
    187 rdf:type schema:Person
    188 sg:person.07760636314.26 schema:affiliation grid-institutes:grid.254567.7
    189 schema:familyName Lu
    190 schema:givenName Yuhang
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760636314.26
    192 rdf:type schema:Person
    193 sg:pub.10.1007/11744023_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000158525
    194 https://doi.org/10.1007/11744023_32
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/3-540-48762-x_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047688119
    197 https://doi.org/10.1007/3-540-48762-x_63
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/978-3-030-01234-2_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107454614
    200 https://doi.org/10.1007/978-3-030-01234-2_49
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/978-3-030-01240-3_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107463369
    203 https://doi.org/10.1007/978-3-030-01240-3_35
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/978-3-030-01264-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107502756
    206 https://doi.org/10.1007/978-3-030-01264-9_9
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/978-3-030-03973-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112140597
    209 https://doi.org/10.1007/978-3-030-03973-8
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/978-3-319-24261-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026974855
    212 https://doi.org/10.1007/978-3-319-24261-3_7
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/978-3-319-46466-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032776736
    215 https://doi.org/10.1007/978-3-319-46466-4_28
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/978-3-319-46604-0_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053105575
    218 https://doi.org/10.1007/978-3-319-46604-0_51
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/978-3-540-45063-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003873955
    221 https://doi.org/10.1007/978-3-540-45063-4_3
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/978-3-642-96868-6_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050429462
    224 https://doi.org/10.1007/978-3-642-96868-6_57
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/978-981-32-9256-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123093655
    227 https://doi.org/10.1007/978-981-32-9256-7_13
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s11042-014-2063-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042412859
    230 https://doi.org/10.1007/s11042-014-2063-6
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s11263-006-0002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049205751
    233 https://doi.org/10.1007/s11263-006-0002-3
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s11263-009-0275-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014796149
    236 https://doi.org/10.1007/s11263-009-0275-4
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
    239 https://doi.org/10.1007/s11263-015-0816-y
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s11263-018-01143-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111154671
    242 https://doi.org/10.1007/s11263-018-01143-3
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1023/a:1020874308076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462968
    245 https://doi.org/10.1023/a:1020874308076
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/s41467-020-18606-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131130545
    248 https://doi.org/10.1038/s41467-020-18606-2
    249 rdf:type schema:CreativeWork
    250 grid-institutes:grid.254567.7 schema:alternateName Department of Anthropology and School of Information Science, University of South Carolina, Columbia, SC, USA
    251 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
    252 Department of History, University of South Carolina, Columbia, SC, USA
    253 schema:name Department of Anthropology and School of Information Science, University of South Carolina, Columbia, SC, USA
    254 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
    255 Department of History, University of South Carolina, Columbia, SC, USA
    256 rdf:type schema:Organization
    257 grid-institutes:grid.448411.c schema:alternateName South Carolina Department of Natural Resources, Columbia, SC, USA
    258 schema:name South Carolina Department of Natural Resources, Columbia, SC, USA
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...